最长上升子序列长度
输入
7
3 1 2 1 8 5 6
输出
4
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010;
int n;
int dp[N];//dp[i] = dp(K) + 1
int a[N];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= n; i++)//初始化DP数组
{
dp[i] = 1;
}
for (int i = 2; i <= n; i++)
{
for (int j = 1; j < i; j++)
{
if (a[j] < a[i])//满足严格单调递增条件
{
dp[i] = max(dp[i], dp[j] + 1);
}
}
}
// cout << dp[n] << endl;
int ans = 0;
for (int i = 1; i <= n; i++)
{
//cout << dp[i] << endl;
ans = max(ans, dp[i]);
}
cout << ans << endl;
}
最长公共子序列
问题描述
给定两个字符串,寻找这两个字串之间的最长公共子序列。
输入格式
输入两行,分别包含一个字符串,仅含有小写字母。
输出格式
最长公共子序列的长度。
样例输入
abcdgh
aedfhb
样例输出
3
状态:dp[i][j] a串前i个 b串前j个的最长公共子序列个数
状态转移:若 a[i]==b[j],则dp[i][j]=dp[i-1][j-1]+1;
若 a[i]!=b[j],则dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
//#include <iostream>
//#include <stdlib.h>
//#include <stdio.h>
//#include <algorithm>
//#include <string.h>
//#include <math.h>
#include <bits/stdc++.h>
using namespace std;
#define MAXN 1010
int dp[MAXN][MAXN];
char a[MAXN],b[MAXN];
int main()
{
gets(a+1);//下标从1 开始
gets(b+1);
int len1=strlen(a+1);//与gest一致
int len2=strlen(b+1);
for(int i=0;i<=len1;i++)
dp[i][0]=0;
for(int i=0;i<=len2;i++)
dp[0][i]=0;
for(int i=1;i<=len1;i++)
for(int j=1;j<=len2;j++)
{
if(a[i]==b[j])
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
printf("%d\n",dp[len1][len2]);
return 0;
}
最长公共上升子序列
#include <iostream>
using namespace std;
const int N = 3010;
int n;
int a[N], b[N];
int f[N][N];
int main()
{
//input
cin >> n;
for (int i = 1; i <= n; ++ i) cin >> a[i];
for (int i = 1; i <= n; ++ i) cin >> b[i];
//dp
for (int i = 1; i <= n; ++ i)
{
for (int j = 1; j <= n; ++ j)
{
f[i][j] = f[i - 1][j];
if (a[i] == b[j])
{
for (int k = 0; k < j; ++ k)
{
if (b[j] > b[k])
{
f[i][j] = max(f[i][j], f[i - 1][k] + 1);
}
}
}
}
}
//find result
int res = 0;
for (int i = 0; i <= n; ++ i) res = max(res, f[n][i]);
cout << res << endl;
return 0;
}
优化代码:
#include <iostream>
using namespace std;
const int N = 3010;
int n;
int a[N], b[N];
int f[N][N];
int main()
{
//input
cin >> n;
for (int i = 1; i <= n; ++ i) cin >> a[i];
for (int i = 1; i <= n; ++ i) cin >> b[i];
//dp
for (int i = 1; i <= n; ++ i)
{
int maxv = 1;
for (int j = 1; j <= n; ++ j)
{
f[i][j] = f[i - 1][j];
if (b[j] == a[i]) f[i][j] = max(f[i][j], maxv);
if (b[j] < a[i]) maxv = max(maxv, f[i - 1][j] + 1);
}
}
//find result
int res = 0;
for (int i = 0; i <= n; ++ i) res = max(res, f[n][i]);
cout << res << endl;
return 0;
}
天天向上
只要对于第i、j、k、l四天,满足i<j<k<l并且对于成绩wi<wj<wk<wl,那么就可以得到一朵小红花的奖励。现让你求出,A同学可以得到多少朵小红花。
样例输入
6
1 3 2 3 4 5
输出
6
#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
int n;
int dp[maxn][maxn],a[maxn];
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
dp[i][j]=0;
}
}
//dp[i][k] 表示以第i个数结尾的 连续递增k个数的递增子序列个数
for(int i=1;i<=n;i++){
dp[i][1]=1;//以第i个数结尾的 连续递增1个数的递增子序列个数 ==1
}
for(int k=2;k<=4;k++){
for(int i=2;i<=n;i++){
for(int j=1;j<i;j++){
if(a[j]<a[i]){
dp[i][k]=dp[i][k]+dp[j][k-1];
}
}
}
}
long long ans=0;
for(int i=4;i<=n;i++){
ans+=dp[i][4];
}
cout<<ans;
return 0;
}