第八题:修改数组
题目描述
给定一个长度为 N 的数组 A = [A1, A2, · · · AN],数组中有可能有重复出现的整数。
现在小明要按以下方法将其修改为没有重复整数的数组。小明会依次修改
A2, A3, · · · , AN。
当修改 Ai 时,小明会检查 Ai 是否在 A1 ∼ Ai−1 中出现过。如果出现过,则小明会给 Ai 加上 1 ;如果新的 Ai 仍在之前出现过,小明会持续给 Ai 加 1 ,直到 Ai 没有在 A1 ∼ Ai−1 中出现过。
当 AN 也经过上述修改之后,显然 A 数组中就没有重复的整数了。现在给定初始的 A 数组,请你计算出最终的 A 数组。
【输入格式】
第一行包含一个整数 N。
第二行包含 N 个整数 A1, A2, · · · , AN 。
【输出格式】
输出 N 个整数,依次是最终的 A1, A2, · · · , AN。
【样例输入】
5
2 1 1 3 4
【样例输出】
2 1 3 4 5
#include <bits/stdc++.h>
#include <algorithm>
using namespace std;
const int maxn=1000000;
int n;
int a[maxn];
int b[maxn];
int main(){
// int a[5]={9,3,2,4,1};
// sort(a+1,a+4);//234--[1,4)
// for(int i=0;i<5;i++){
// cout<<a[i];
// }
memset(b,0,sizeof(b));
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
b[0]=a[0];
if(a[1]==a[0]){
a[1]=a[1]+1;
b[1]=a[1];
}
else b[1]=a[1];
for(int i=2;i<n;i++){
sort(a,a+i);//[0,i-1)
for(int j=0;j<i;j++){
if(a[i]==a[j]){
a[i]=a[i]+1;
b[i]=a[i];
}
else b[i]=a[i];
}
}
for(int i=0;i<n;i++){
cout<<b[i]<<" ";
}
return 0;
}
/*
5
2 1 1 3 4
*/ ------80%
第九题:糖果
(状态压缩+DP)
题目描述
糖果店的老板一共有 M 种口味的糖果出售。为了方便描述,我们将 M 种口味编号 1 ∼ M。
小明希望能品尝到所有口味的糖果。遗憾的是老板并不单独出售糖果,而 是 K 颗一包整包出售。
幸好糖果包装上注明了其中 K 颗糖果的口味,所以小明可以在买之前就知道每包内的糖果口味。
给定 N 包糖果,请你计算小明最少买几包,就可以品尝到所有口味的糖果。
【输入格式】
第一行包含三个整数 N、M 和 K。
接下来 N 行每行 K 这整数 T1, T2, · · · , TK,代表一包糖果的口味。
【输出格式】
一个整数表示答案。如果小明无法品尝所有口味,输出 −1。
【样例输入】
6 5 3
1 1 2
1 2 3
1 1 3
2 3 5
5 4 2
5 1 2
【样例输出】
2
#include <bits/stdc++.h>
#include <algorithm>
using namespace std;
const int maxn=25;
int a[105][maxn],f[(1<<20)+5],b[maxn];
int main(){
int n,m,k;
cin>>n>>m>>k;
for(int i=1;i<=n;i++){
for(int j=1;j<=k;j++){
cin>>a[i][j];
b[i]|=1<<(a[i][j]-1);
//例如第一包 00001|00010=00011
}
}
for(int i=1;i<=(1<<m)-1;i++)
f[i]=-1;
//f[i][j] 前i包糖果达到状态j,至少需要多少包
for(int i=1;i<=n;i++){
for(int j=0;j<=(1<<m)-1;j++){
if(f[j]!=-1) //之前已经达到j状态
f[j|b[i]]=(f[j|b[i]]==-1?f[j]+1:min(f[j]+1,f[j|b[i]]));
//j|b[i] 选择了第i包可以达成的状态
}
}
cout<<f[(1<<m)-1];
}
/*
6 5 3
1 1 2
1 2 3
1 1 3
2 3 5
5 4 2
5 1 2
*/
第十题:组合数问题
输入
第一行两个数 t, k,其中 t 代表该测试点包含 t 组询问,k 的意思与上文中 相同。
接下来 t 行每行两个整数 n, m,表示一组询问。
输出
输出 t 行,每行一个整数表示对应的答案。由于答案可能很大,请输出答 案除以 10^9 + 7的余数。
补充知识:
1、组合数的计算
2、组合数与杨辉三角的关系
第n行的第m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数(n ,m 都是从1 开始数,例如第5行第3个元素是C42–>6)
#include <bits/stdc++.h>
#include <algorithm>
using namespace std;
const int maxn=2010;
int c[maxn][maxn];
int main(){
c[0][0]=1;
c[1][0]=c[1][1]=1;//如上初始化,
//绝对绝对不能忘记或错,结合常识。
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=2000;j++)//这不是此方法能承受的最大范围,
//打出题目要求的即可。
c[i][j]=c[i-1][j-1]+c[i-1][j];//递推公式。
}
cout<<c[5][2];
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int maxn=2010;
long long c[maxn][maxn],mod=1e9+9;
int flag[maxn][maxn]={0};
int k;
void pre()
{
c[0][0]=1;
c[1][0]=c[1][1]=1;//如上初始化,
//绝对绝对不能忘记或错,结合常识。
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=2000;j++){
//这不是此方法能承受的最大范围,
//打出题目要求的即可。
c[i][j]=(c[i-1][j-1]+c[i-1][j])%k;//递推公式。
if(c[i][j]==0) flag[i][j]=1;
}
}
}
int main()
{
int n,m,t;
cin>>t>>k;
pre();//直接求出2000以内所有组合数
while(t--)
{
long long ans=0;
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=0;j<=min(i,m);j++)
//if(c[i][j]%k==0) ans++;
ans+=flag[i][j];
cout<<ans<<endl;
}
return 0;
}
B组:
后缀表达式
给定 N 个加号、M 个减号以及 N + M + 1 个整数 A1, A2, · · · , AN+M+1,小
海想知道在所有由这 N 个加号、M 个减号以及 N + M + 1 个整数凑出的合法的
后缀表达式中,结果最大的是哪一个?
请你输出这个最大的结果。
例如使用1 2 3 + -,则 “2 3 + 1 -” 这个后缀表达式结果是 4,是最大的。
#include<iostream>
#include<algorithm>
using namespace std;
const int N=2E5+10;
int a[N];
int main()
{
int m,n;
cin>>n>>m;
int k = m+n+1;
for(int i=0;i<k;i++)cin>>a[i];
sort(a,a+k);
long long res=0;
if(!m)for(int i=0;i<k;i++)res+=a[i];
else
{
res=a[k-1]-a[0];
for(int i=1;i<k-1;i++)res+=abs(a[i]);
}
cout<<res;
return 0;
}