1、在实验室服务器里运行新项目的时候遇到
conda activate pytorch3_7(我的环境名字)
conda install -c anaconda tensorboard (失败 一直堵在"Solving environment" )
pip install tensorboard
2、新建一个新的环境:复制env_lab3原始旧环境 然后重命名为新环境
conda create -n NewName --clone OldName #把环境 OldName 重命名成 NewName
conda remove -n OldName --all
3、复现项目所需环境的包requirement.txt
pip install -r requirements.txt
4、在服务器上直接用命令下载网址上的大数据集(如果是压缩包 还要使用tar命令解压缩)
1、首先激活环境 安装包wget:
conda install -c conda-forge wget
2、然后终端执行命令 wget -P 之指定下载位置 数据集网址:
例如:
wget -P /home/cuinannan/code/RePaper/deepfake-whisper-features/data/In-The-Wild https://owncloud.fraunhofer.de/index.php/s/JZgXh0JEAF0elxa/download
3、tar解压缩.tar、.tar.gz、.tar.bz2 等格式的存档文件 首先 cd 带解压缩文件的名字
tar -xzvf 文件名
例如 tar -xzvf DF-keys-stage-1.tar.gz
解压缩 .zip格式的压缩文件
unzip 文件名
4、直接克隆git clone 文件进远程服务器中
cd /path/to/directory 首先进入文件中
git clone https://github.com/TakHemlata/RawBoost-antispoofing.git
然后 git clone 文件名
2、文件里面含有批量子文件,每个子文件里面又有大量的图片。这些图片某几张是非RGB 的形式。
解决办法:
要将掺杂着不是RGB的图片转换成RGB,并替换原来的图片,同时保持文件目录结构,你可以使用Python的Pillow库(PIL)来处理图片。以下是一个示例代码,假设你的图片位于一个包含子目录的根文件夹中,你可以使用os模块来递归遍历文件夹中的所有图片文件,并使用Pillow来转换非RGB图片。
首先,确保你已经安装了Pillow库,如果没有安装,可以使用以下命令进行安装:
pip install pillow
然后,可以使用以下Python代码来处理图片文件:
from PIL import Image
import os
# 定义一个函数,用于检查图片是否为RGB格式
def is_rgb_image(image_path):
try:
image = Image.open(image_path)
return image.mode == 'RGB'
except:
return False
# 根文件夹路径,你需要将其替换为你的文件夹路径
root_folder = '/path/to/your/root/folder'
# 遍历根文件夹及其子文件夹中的所有图片文件
for root, dirs, files in os.walk(root_folder):
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')): # 指定支持的图片格式
image_path = os.path.join(root, file)
if not is_rgb_image(image_path):
# 如果图片不是RGB格式,进行转换
try:
image = Image.open(image_path)
image = image.convert('RGB')
image.save(image_path)
print(f'Converted: {image_path}')
except Exception as e:
print(f'Error converting {image_path}: {e}')
这段代码会遍历根文件夹及其子文件夹中的所有图片文件,检查它们是否为RGB格式。如果不是RGB格式,它将尝试将其转换为RGB格式并保存。请确保替换root_folder变量的值为你的根文件夹的实际路径。此代码不会破坏文件目录结构,而是在原地替换非RGB图片。如果需要备份图片,请务必在操作前做好备份。