最短路【洛谷P4366】

题目连接

题目描述

 企鹅国中有NN座城市,编号从1到N。
 对于任意的两座城市i和j,企鹅们可以花费(i xor j)*C的时间从城市i走到城市j,这里C为一个给定的常数。
 当然除此之外还有M条单向的快捷通道,第i条快捷通道从第 F i F_i Fi​个城市通向第 T i T_{i} Ti个城市,走这条通道需要消耗 V i V_i Vi的时间。
 现在来自Penguin Kingdom University的企鹅豆豆正在考虑从城市A前往城市B最少需要多少时间?

输入描述:
 输入第一行包含三个整数N,M,C,表示企鹅国城市的个数、快捷通道的个数以及题面中提到的给定的常数C。
 接下来的M行,每行三个正整数 F i F_{i} Fi, T i T_{i} Ti, V i V_{i} Vi(1≤ F i F_{i} Fi≤N,1≤ T i T_{i} Ti≤N,1≤ V i V_{i} Vi≤100),分别表示对应通道的起点城市标号、终点城市标号和通过这条通道需要消耗的时间。
 最后一行两个正整数A,B(1≤C≤100),表示企鹅豆豆选择的起点城市标号和终点城市标号。
输出描述:
 输出一行一个整数,表示从城市 A 前往城市 B 需要的最少时间。
示例1
输入
4 2 1
1 3 1
2 4 4
1 4
输出
5
说明
直接从 1 走到 4 就好了。
示例2
输入
7 2 10
1 3 1
2 4 4
3 6
输出
34
说明
先从 3 走到 2 ,再从 2 通过通道到达 4 ,再从 4 走到 6。

备注:
在这里插入图片描述

题解说明

 给N个城市,M条边,除了这M条边以外,每两个城市之间还存在一条边,边的权重是(i xor j)*C。然后给你起点和终点,问你最短路径是多少?

题目分析:
 N最大是1e5个数,M最大是5e5 M条边的权重小于100,C小于100。

什么情况下,两个数i、j之间存在一条边?
 比如 1 2 / 1 3 / 1 4
 1 xor 2 = 3
 1 xor 3 = 2
 1 xor 4 = 5
 1 xor 1 = 0
 也就是说明,如果两个数,它存在某一数位上不同的话,那么他们就存在一条边,那么怎么样来表示?

如果是1 3/ 1 5这种情况,
 那么他们边的权值就是 w = 1 n w=1^n w=1n,n=3,w=2 n=5,w=4
如果是1 2/1 4这种情况,
 因为他们中间没有一个数位上不同,所以我们可以通过在他们中间添加一个数0的方式来解决这个问题。这样的话 我们可以转化为
 1 0 2/1 0 4
 那么他们的权重就是w=(1^0)+(0^2)=3 /w=(1^0)+(0^4)=5

 那么我们就可以通过下面的方式来构建边。这份代码很巧妙,明面上看似就是只搭建了单向边,但是遍历一遍后能发现,其实另一个方向的单向边也在这两个循环中能找到。但是值得注意的是,我们第一个for循环的起点必须是0,因为只有这样,我们才能构造出从0出发的边。

for(i=0;i<=n;i++){
	for(j=1;j<=n;j<<=1){
		int v=i^(j);
		if(v<=n){
			add(i,v,c*j);
		} 
	}
}

 构造完后,我们发现边的数量为M+N*log(N) 这大概是在2e6的范围,但是如果每次我们都遍历一遍2e6条边的话,计算量比较大。所以我们通过采用优先队列的方式来优化一下。每次弹出一个点的最小距离,并且标记一下,下次遍历就不管它了。

解题代码

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<map>
using namespace std;
#define ll long long
const int maxn=5e6+10;
const int inf=0x3f3f3f3f;
int head[maxn],tot,n,m,c,dis[maxn];
bool flag[maxn];
struct Node{
	int v,w,nex;
}node[maxn*2];
void add(int u,int v,int w){
	node[tot].v=v;node[tot].w=w;
	node[tot].nex=head[u];
	head[u]=tot++;
}
void init(){
	memset(head,-1,sizeof(head));tot=0;
	memset(flag,0,sizeof(flag));
}
struct NA{
	int id,x;
};
bool operator > (NA i,NA j){
	return i.x>j.x;
}
void spfa(int s){
	for(int i=0;i<=n;i++){
		dis[i]=inf;
	}
	dis[s]=0;flag[s]=1;
	priority_queue<NA,vector<NA>,greater<NA> > qu;
	NA u;
	u.id=s;u.x=0;
	qu.push(u);
	while(!qu.empty()){
		u=qu.top();qu.pop();
		flag[u.id]=1;
		for(int i=head[u.id];~i;i=node[i].nex){
			int v=node[i].v;
			int w=node[i].w;
			if(dis[u.id]+w<dis[v]){
				dis[v]=dis[u.id]+w;
				if(!flag[v]){
					NA q;
					q.id=v;q.x=dis[v];
					qu.push(q);
				}
			}
		}
	}
}
int main(){
	int i,j,t,x,y;
	scanf("%d%d%d",&n,&m,&c);
	init();
	for(i=0;i<m;i++){
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
	}
	for(i=0;i<=n;i++){
		for(j=1;j<=n;j<<=1){
			int v=i^(j);
			if(v<=n){
				add(i,v,c*j);
			} 
		}
	}
	scanf("%d%d",&x,&y);
	spfa(x);
	printf("%d\n",dis[y]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值