题目描述
有一个长度为n的数组,值为 a[i], 牛牛想找到数组中第 k 小的数。比如 1 2 2 3 4 6 中,第 3 小的数就是2.
牛牛觉得这个游戏太简单了,想加一点难度,现在牛牛有 m 个操作,每个操作有两种类型。
1 x 1 代表操作一,给数组中加一个元素 x 。(0 ≤ x ≤ 1e9)
2 2 代表操作二,查询第 k 小的数。如果没有 k 个数就输出−1
输入描述:
第一行有三个整数,n m k,(1≤n,m,k≤2e5)
第二行包含 n 个整数 a[i] ( 0 ≤ a[i] ≤ 1e9)
接下来m行,每行代表一个操作。具体见题目描述
输出描述:
每次查询输出一个第 k 小的数。
示例1
输入
5 4 3
1 2 3 4 5
2
1 1
1 3
2
输出
3
2
解题思路
常规的解题思路就是用一个优先队列来对输入的数组进行排序,然后查询操作的时候,我们找第k个最小值。这样的话我们就能找到答案。但是这样的做法很容易就超时了。
所以我们就需要改变一下思路。
数组的优先顺序是一定要的,那么我们可以从大往小排。保持队列大小为k就行。这样的话我们每次只要把队首元素输出就行了。
解题代码
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<queue>
#include<algorithm>
#include<map>
using namespace std;
const int maxn=4e5+10;
priority_queue<int,vector<int>,less<int> > q;
int n,m,k;
int main(){
int i,j;
scanf("%d%d%d",&n,&m,&k);
for(i=0;i<n;i++){
scanf("%d",&j);
q.push(j);
if(q.size()>k) q.pop();
}
while(m--){
scanf("%d",&j);
if(j==2){
if(q.size()==k)
printf("%d\n",q.top());
else
printf("-1\n");
}
else{
int t;
scanf("%d",&t);
q.push(t);
if(q.size()>k) q.pop();
}
}
return 0;
}