输入的数据:
[root@i-love-you hadoop]# bin/hdfs dfs -text /input/hehe
hadoop hello
hadoop me
hadoop java
代码:
package inputformat;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
public class NLineInputFormatTest {
public static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
final Text k2 = new Text();
final LongWritable v2 = new LongWritable();
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws InterruptedException, IOException {
final String line = value.toString();
final String[] splited = line.split("\\s");
for (String word : splited) {
k2.set(word);
v2.set(1);
context.write(k2, v2);
}
}
}
public static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
LongWritable v3 = new LongWritable();
protected void reduce(Text k2, Iterable<LongWritable> v2s,
Reducer<Text, LongWritable, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
long count = 0L;
for (LongWritable v2 : v2s) {
count += v2.get();
}
v3.set(count);
context.write(k2, v3);
}
}
public static void main(String[] args) throws Exception {
final Configuration conf = new Configuration();
final Job job = Job.getInstance(conf, NLineInputFormatTest.class.getSimpleName());
// 1.1
FileInputFormat.setInputPaths(job,
"hdfs://192.168.1.10:9000/input/hehe");
//这里改了一下,把TextInputFormat改成了NLineInputFormat
NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt("2"));
//NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt(args[0]));
job.setInputFormatClass(NLineInputFormat.class);
// 1.2
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 1.3 默认只有一个分区
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
// 1.4省略不写
// 1.5省略不写
// 2.2
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 2.3
FileOutputFormat.setOutputPath(job, new Path(
"hdfs://192.168.1.10:9000/out1"));
job.setOutputFormatClass(TextOutputFormat.class);
// 执行打成jar包的程序时,必须调用下面的方法
job.setJarByClass(NLineInputFormatTest.class);
job.waitForCompletion(true);
}
}
结果:
[root@i-love-you hadoop]# bin/hadoop jar data/nline.jar
15/04/16 15:04:48 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/04/16 15:04:50 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
15/04/16 15:04:51 INFO input.FileInputFormat: Total input paths to process : 1
15/04/16 15:04:52 INFO mapreduce.JobSubmitter: number of splits:2
15/04/16 15:04:53 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1429167587909_0001
15/04/16 15:04:54 INFO impl.YarnClientImpl: Submitted application application_1429167587909_0001
15/04/16 15:04:54 INFO mapreduce.Job: The url to track the job: http://i-love-you:8088/proxy/application_1429167587909_0001/
15/04/16 15:04:54 INFO mapreduce.Job: Running job: job_1429167587909_0001
15/04/16 15:05:38 INFO mapreduce.Job: Job job_1429167587909_0001 running in uber mode : false
15/04/16 15:05:38 INFO mapreduce.Job: map 0% reduce 0%
15/04/16 15:08:31 INFO mapreduce.Job: map 100% reduce 0%
15/04/16 15:10:03 INFO mapreduce.Job: map 100% reduce 100%
15/04/16 15:10:07 INFO mapreduce.Job: Job job_1429167587909_0001 completed successfully
15/04/16 15:10:08 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=101
FILE: Number of bytes written=318117
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=248
HDFS: Number of bytes written=29
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=356494
Total time spent by all reduces in occupied slots (ms)=63006
Total time spent by all map tasks (ms)=356494
Total time spent by all reduce tasks (ms)=63006
Total vcore-seconds taken by all map tasks=356494
Total vcore-seconds taken by all reduce tasks=63006
Total megabyte-seconds taken by all map tasks=365049856
Total megabyte-seconds taken by all reduce tasks=64518144
Map-Reduce Framework
Map input records=3
Map output records=6
Map output bytes=83
Map output materialized bytes=107
Input split bytes=200
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=107
Reduce input records=6
Reduce output records=4
Spilled Records=12
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=16068
CPU time spent (ms)=7560
Physical memory (bytes) snapshot=356200448
Virtual memory (bytes) snapshot=2527195136
Total committed heap usage (bytes)=257171456
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=48
File Output Format Counters
Bytes Written=29
解析:
我设置每2行为一个InputSplit:
NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt("2"));
在输出中可以看到splits的个数:
15/04/16 15:04:52 INFO mapreduce.JobSubmitter: number of splits:2