baopapa
码龄5年
关注
提问 私信
  • 博客:6,798
    6,798
    总访问量
  • 11
    原创
  • 694,071
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2020-09-15
博客简介:

baopapa的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得1次评论
  • 获得10次收藏
  • 博客总排名694,071名
创作历程
  • 1篇
    2023年
  • 10篇
    2022年
成就勋章
兴趣领域 设置
  • 人工智能
    机器学习神经网络
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

菜鸟错题整理

解决办法:将脚本参数调制256以上的size便可运行,具体为什么梯度为零有待学习。1、文件中设置了生成图片大小为256,但是自己写的脚本文件运行为128。问题:代码不支持128大小图片的训练,会出现有的梯度为0的情况。报错:输入值为空类型而非Tensor。
原创
发布博客 2023.08.16 ·
123 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

卷积层里的填充和步幅

当图片大小不大,但是想用更深的卷积层,就需要用到填充。
原创
发布博客 2022.10.26 ·
522 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-卷积层

对全连接层使用平移不变性和局部性的到卷积层。
原创
发布博客 2022.10.26 ·
1095 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习—logistic

将输入的一张图片分成红黄蓝三张带有像素点值的图片,并将每个像塑从头排列成向量x,因为有三张图片,所以x的里的数据就有3。对于逻辑回归函数,一般输出值使用1/1+e^(-z)函数(sigmoid函数),这样能保证输出值被压缩在0-1之间。x为nx的特征向量,y的输出范围是{0,1}。下图为检测图片是否为小猫的例子。
原创
发布博客 2022.10.24 ·
858 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-自动微分

求导是几乎所有深度学习优化算法的关键步骤。虽然求导的计算很简单,只需要一些基本的微积分。但对于复杂的模型,手工进行更新是一件很痛苦的事情(而且经常容易出错)。深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。实际中,根据我们设计的模型,系统会构建一个计算图(computational graph), 来跟踪计算是哪些数据通过哪些操作组合起来产生输出。自动微分使系统能够随后反向传播梯度。
原创
发布博客 2022.10.22 ·
922 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深度学习-线性代数

标量由只有一个元素的张量表示。
原创
发布博客 2022.10.16 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习—数据预处理

对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”, pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。注意,“NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。在这里,我们将考虑插值法。
原创
发布博客 2022.10.15 ·
1727 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

深度学习-入门知识3

张量的加减乘除:求幂的一元运算符:张量连接,沿着0轴连接,就是按行堆起来,沿着1轴,就是按列连起来:通过逻辑运算符构建二元张量:对张量中的所有元素进行求和,会产生一个单元素张量:用于形状不同的张量执行元素操作,通过适当复制元素来扩展一个或两个数组, 以便在转换之后,两个张量具有相同的形状,a和b分别是3x1和1x2矩阵,如果让它们相加,它们的形状不匹配。 我们将两个矩阵广播为一个更大的3x2矩阵,矩阵a将复制列,矩阵b将复制行,然后相加:张量中的元素可以通过索引访问。 与任何Python数
原创
发布博客 2022.10.14 ·
351 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习-入门知识2

我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0。们还可以通过提供包含数值的Python列表(或嵌套列表),来为所需张量中的每个元素赋予确定值。在这里,最外层的列表对应于轴0,内层的列表对应于轴1。使用randn函数随机采样。其中的每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样。同样,我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为1。其中2,3,4可以理解为这个张量里有两组数据,每组有3行,没行有4列。轴0对应张量的每一行,轴1对张量的每一页。
原创
发布博客 2022.10.13 ·
391 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-入门知识

张量表示由一个数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。
原创
发布博客 2022.10.12 ·
335 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习-神经网络-介绍

上面三个是三种规模下的深度学习,深度学习随着规模的增大,性能也能随着增大。(规模可以是数据量也可以是神经网络层数)神经网络同时在图像识别、自动驾驶、语言翻译、广告投放等已经有了成功的应用。红线为传统机器学习,性能提升到一定程度就会出现瓶颈。传统的机器学习性能有一定的限制。ReLU函数(修正线性单元)
原创
发布博客 2022.10.08 ·
170 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏