模板:欧几里得 扩展欧几里得 乘法逆元

一、欧几里得算法

        求a,b的最小公约数。

int GCD(int a, int b) {
	int r;
	while (b) {
		r = a % b;
		a = b;
		b = r;
	}
	return a;
}


二、扩展欧几里得

        求解方程ax + by = gcd(a, b),并返回gcd(a,b)。

        简单证明:


//求解ax + by = gcd(a,b)的整数解 返回gcd(a,b)
int exGCD(int a, int b, int &x, int &y) {
	if (b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	int xx, yy;
	int gcd = exGCD(b, a%b, xx, yy);
	x = yy;
	y = xx - a / b * yy;
	return gcd;
}


三、扩展欧几里得的一般情况

        求解ax + by = c的最小非负整数解x,其中c被gcd(a, b)整除,否则方程无解(裴蜀定理?)

//求解ax + by = c的最小非负整数解x 其中c被gc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值