机器学习笔记:正则化项

本文介绍了机器学习中防止过拟合的正则化技术,重点关注L0、L1和L2范数。L0范数表示非零参数的数量,不便于优化;L1范数通过使参数稀疏化来防止过拟合;L2范数则通过减小参数幅度来避免过拟合,导致参数不会变为零。L1和L2正则化的梯度更新规则及其对模型的影响也进行了讨论。
摘要由CSDN通过智能技术生成

在机器学习算法中如果只使用经验风险最小化去优化损失函数则很可能造成过拟合的问题,通常我们要在损失函数中加入一些描述模型复杂程度的正则化项,使得模型在拥有较好的预测能力的同时不会因为模型过于复杂而产生过拟合现象,即结构风险最小化
正则化项一般是模型复杂程度的单调递增函数,因此可以使用模型参数向量的范数来计算

一部分内容在数学上的定义更为广泛,大家可以看看相关资料。这里只涉及了一些和机器学习有关的定义,可能不是很严谨


L-p范数

L-p范数定义如下
L p = ( ∑ i ∣ x i ∣ p ) 1 p L^{p} = (\sum_{i}{|x_{i}|^{p}})^{\frac{1}{p}} Lp=(ixip)p1
在机器学习中常见的有L0、L1和L2范数

L0范数

L0范数为参数向量中非零值的个数
∣ ∣ x ∣ ∣ 0 = ∑ i I ( x i ≠ 0 ) ||x||_{0} = \sum_{i}{I(x_{i} \neq 0)} x0=iI(xi̸=0)
其中 I ( b o o l ) I(bool) I(bool)bool 的值为 True 时值为1,为 False 时值为0
因为L0范数没有很好的数学表达形式,所以很少直接优化L0范数

L1范数

L1范数为参数向量中元素绝对值之和
∣ ∣ x ∣ ∣ 1 = ∑ i ∣ x i ∣ ||x||_{1} = \sum_{i}{|x_{i}|} x1=ixi

L2范数

L2范数为参数向量的欧氏距离
∣ ∣ x ∣ ∣ 2 = ∑ i x i 2 ||x||_{2} = \sqrt{\sum_{i}{x_{i}^{2}}} x2=i​<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值