材料力学公式大赏

截面几何

知识点符号或公式备注
横截面积AA矩形=bh,A圆环 = π 4 \fracπ4 4π(D2-d2),A薄壁圆环≈2πδ
静矩Sz = ∫A ydA截面坐标系默认右y上z,截面对过形心的轴的静矩为零
单侧静矩Sz*=∫单侧A ydA常用于计算弯曲切应力,且其常沿中心轴成抛物线分布,在中性轴处最大
形心zC = ∫ A z d A ‾ A = S y ‾ A \begin{matrix}\underline{∫_Az\mathrm{d}A}\\A\end{matrix}=\begin{matrix}\underline{S_y}\\A\end{matrix} AzdAA=SyAC为形心,可用Sy=Azc来计算静矩;yc三角= h 3 \frac h3 3h
惯性积Iyz = ∫A yzdA可正可负,y、z轴相互垂直,若有一个是对称轴,则Iyz=0
惯性矩Iz = ∫A y2dAIzC为形心主惯性矩,且Iz ≥ Izc
极惯性矩Iρ = ∫A ρ2dAIρ = ∫A(y2+z2)dA = Iy+Iz
主惯性轴主惯性轴为一对正交坐标轴,且截面对它们的惯性积为0
主惯性矩Iz截面图形对主惯性轴的惯性矩
惯性半径/回转半径iz = I z A ‾ \sqrt{\begin{matrix}I_z\\\overline A\end{matrix}} IzA ,iρ = I ρ A ‾ \sqrt{\begin{matrix}I_ρ\\\overline A\end{matrix}} IρA 由I = i2A所得,iz圆 = d 4 \frac d4 4d
平行移轴公式Iz = Izc + a2Aa为z轴到中性轴的距离,对惯性积也有Iyz=Iyzc+abA
扭转截面系数 W ρ = I ρ ‾ R W_ρ=\begin{matrix}\underline{I_ρ}\\R\end{matrix} Wρ=IρR用于等截面圆轴
圆环截面惯性矩 I z = 1 64 I_z=\frac{1}{64} Iz=641πD4(1-α4)α = d D ‾ \begin{matrix}d\\\overline D\end{matrix} dD为内外径之比
圆环截面弯曲截面系数 W z = 1 32 W_z=\frac{1}{32} Wz=321πD3(1-α4)α = d D ‾ \begin{matrix}d\\\overline D\end{matrix} dD为内外径之比
圆环截面极惯性矩 I ρ = 1 32 I_ρ=\frac{1}{32} Iρ=321πD4(1-α4)Iρ为Iz的一半
圆环截面扭转截面系数 W ρ = 1 16 W_ρ=\frac{1}{16} Wρ=161πD3(1-α4)Wρ为Wz的一半
弯曲截面系数 W z = I z y m a x ‾ W_z=\begin{matrix}I_z\\\overline{y_{max}}\end{matrix} Wz=Izymax用于等截面梁
矩形截面惯性矩Iz = 1 12 \frac{1}{12} 121bh3b//z,h⊥z,可记为Iz = 1 12 \frac{1}{12} 121//⊥3
矩形截面弯曲截面系数Wz = 1 6 \frac{1}{6} 61bh2b//z,h⊥z,Wz = Iz÷ h 2 \frac{h}{2} 2h,可记为Wz = 1 6 \frac{1}{6} 61//⊥2
·若截面对于过某点的一对主惯性轴的两惯性矩相等,则过该点的任一对正交坐标轴皆为主惯性轴
·若截面的对称轴数≥3,则其任意形心轴皆为形心主惯性轴,且形心主惯性矩皆相等

材料测定

符号
σp=比例极限,σe=弹性极限
σs=屈服极限,低碳钢等塑性材料、拉伸常用;σb=强度极限,灰铸铁等脆性材料、压缩常用
σbs=挤压应力,σc=压缩应力,σt=拉伸应力,σu=极限应力

应力理论

知识点公式单位/备注
延伸率δ= l 1 − l l \frac{l_1-l}l ll1l×100%用于衡量材料的塑性
截面收缩率ψ= A − A 1 A \frac{A-A_1}A AAA1×100%也用于衡量材料的塑性
塑性应变εp=ε-εe= Δ L L − σ E \frac{ΔL}L-\fracσE LΔLEσ对卸载后的试样立即重新加载会产生冷作硬化
泊松比的定义v= − ε y ‾ ε x -\begin{matrix}\underline{ε_y}\\ε_x\end{matrix} εyεx横、轴向变形之比,一边伸长,另一边就缩短
两大应力σ=正应力,τ=切应力由力与微面积之比定义,单位一般为MPa
薄壁圆筒应力σ’·πDδ= p π D 2 4 \frac{pπD^2}4 4pπD2,σ’‘·2δL’=pDL;σ’= p D 4 δ \frac{pD}{4δ} 4δpD,σ’'= p D 2 δ \frac{pD}{2δ} 2δpDδ为筒壁厚,p为内压,σ’为轴向压力,σ’'为周向压力
切应力互等定理∑Mz = (τydxdz)·dy-(τxdydz)·dx = 0 ⇒ τx = τy在两垂直平面上,切应力成对存在且大小相等
应力圆以(σxxy)为0°端点,(σy,-τxy)为180°端点作圆坐标系横σ竖τ,圆上转角为实际转角的两倍
应力圆应力圆与σ轴的两交点为两个主应力也可用应力圆法用εα,εα+90°求ε’,ε",但对应的γxyαα+90°-2εα+45°
三向应力圆由三个主应力所做的三个圆,一般是平面加一σ应力可取最大圆之内,两小圆之外的任一点,τmax = σ 1 − σ 3 ‾ 2 \begin{matrix}\underline{σ_1-σ_3}\\2\end{matrix} σ1σ32
两大模量E=弹性模量,G=剪切模量由胡克定律定义,单位一般为GPa
四大刚度EA=拉压刚度,GA=剪切刚度EIz=弯曲刚度,GIp=扭转刚度
弹切模量互换G = E 2 ( 1 + ν ) ‾ \begin{matrix}E\\\overline{2(1+ν)}\end{matrix} E2(1+ν)可用于正应变和切应变的互换
胡克定律F = kx,σ = Eε,τ = Gγε为正应变,γ为切应变
广义胡克定律Eε’ = σ’-ν(σ’‘+σ’‘’)ε’为σ’方向的正应变,公式中的三个应力正交,拉正压负
应变能密度线弹性范围内,单位体积内,vε= 1 2 \frac12 21σε或 1 2 \frac12 21τγvε=vv+vd,应变能为∭v( 1 2 \frac12 21σε)dV或∭v( 1 2 \frac12 21τγ)dV
应变能密度vε= 1 2 \frac12 21σ1ε1+ 1 2 \frac12 21σ2ε2+ 1 2 \frac12 21σ3ε3
应变能密度体积改变能密度:vv= 1 − 2 v 6 E \frac{1-2v}{6E} 6E12v123)2形状改变能密度:vd= 1 + v 6 E \frac{1+v}{6E} 6E1+v[(σ12)2+(σ23)2+(σ31)2]
第一强度理论σr1 = σ1 ≤ [σ] = σ b ‾ n b \begin{matrix}\underline{σ_b}\\n_b\end{matrix} σbnb也叫最大拉应力理论,用于脆性材料,皆可不超[σ]以5%
第二强度理论σr2 = σ1 - ν(σ23) ≤ [σ] = σ b ‾ n b \begin{matrix}\underline{σ_b}\\n_b\end{matrix} σbnb也叫最大拉应变理论,用于脆性材料
第三强度理论σr3 = σ13 ≤ [σ] = σ s ‾ n s \begin{matrix}\underline{σ_s}\\n_s\end{matrix} σsns也叫最大切应力理论,用于塑性材料
第三强度σ-τ理论σr3 = σ 2 + 4 τ 2 \sqrt{σ^2+4τ^2} σ2+4τ2 σ = σ N 2 + σ M 2 \sqrt{σ_N^2+σ_M^2} σN2+σM2
第三强度M-T理论σr3 = 1 W M 2 + T 2 \frac{1}{W}\sqrt{M^2+T^2} W1M2+T2 矩形杆中M=Mx±My,回转杆中M= M x 2 + M y 2 \sqrt{M_x^2+M_y^2} Mx2+My2
第四强度理论 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 1 − σ 3 ) 2 ] ≤ [ σ ] = σ s ‾ n s \sqrt{\frac{1}{2}[(σ_1-σ_2)^2+(σ_2-σ_3)^2+(σ_1-σ_3)^2]}≤[σ]=\begin{matrix}\underline{σ_s}\\n_s\end{matrix} 21[(σ1σ2)2+(σ2σ3)2+(σ1σ3)2] [σ]=σsns也叫形状改变能密度理论,用于塑性材料
第四强度σ-τ理论σr4 = σ 2 + 3 τ 2 \sqrt{σ^2+3τ^2} σ2+3τ2 σ = σ N 2 + σ M 2 \sqrt{σ_N^2+σ_M^2} σN2+σM2
第四强度M-T理论σr4 = 1 W M 2 + 3 4 T 2 \frac{1}{W}\sqrt{M^2+\frac{3}{4}T^2} W1M2+43T2 矩形杆中M=Mx ± My,回转杆中M = M x 2 + M y 2 \sqrt{M_x^2+M_y^2} Mx2+My2

拉压杆与超静定问题

知识点公式备注
拉压胡克公式Δ = F N L ‾ E A \begin{matrix}\underline{F_NL}\\EA\end{matrix} FNLEA应力拉正压负,作轴力图时左正右负
装配应力σ = F N ‾ A \begin{matrix}\underline{F_N}\\A\end{matrix} FNA和普通拉压正应力的算法一样
温度应变ΔL = αtLΔtαt为线膨胀系数,升温伸长,应变为正;降温缩短,应变为负
温度应力σt = EαtΔt由ΔL = F N L ‾ E A \begin{matrix}\underline{F_NL}\\EA\end{matrix} FNLEA 和 ΔL = αtLΔt 可得
变形协调关系通过几何关系分析延长受拉杆,缩短受压杆,以切线(垂线)代替弧线作出两垂线,交点即变形后的连接点

扭轴

知识点公式备注
切应变γ = tan φγ为切变模量,φ为切变角
扭转轴切应变γρ = d s ‾ d x = ρ d φ ‾ d x \begin{matrix}\underline{\mathrm ds}\\\mathrm dx\end{matrix}=\begin{matrix}\underline{ρ\mathrm dφ}\\\mathrm dx\end{matrix} dsdx=ρdφdxρ为极径,φ为扭转角
扭转切应力τρ =Gγρ = G ρ d φ ‾ d x \begin{matrix}\underline{ρ\mathrm dφ}\\\mathrm dx\end{matrix} ρdφdx由切应变公式和剪切胡克定律可得
微元长度扭转角 d φ ‾ d x = T G I p ‾ \begin{matrix}\underline{\mathrm dφ}\\\mathrm dx\end{matrix}=\begin{matrix}T\\\overline{GI_p}\end{matrix} dφdx=TGIp由剪切胡克定律、扭转静力关系推出,对任何轴通用
扭转静力关系T = ∫A(ρτρ)dA可和剪切胡克定律、极惯性矩定义式联动推出圆轴切应力
圆轴扭矩换算T = 9549 P n \frac Pn nP功率P的单位为kW,转速n的单位为r/min
圆轴切应力τρ = T ρ ‾ I p \begin{matrix}\underline{Tρ}\\I_p\end{matrix} Ipτmax = T R ‾ I p = T W p ‾ \begin{matrix}\underline{TR}\\I_p\end{matrix}=\begin{matrix}T\\\overline{W_p}\end{matrix} TRIp=TWp
单位长度扭转角θ = T G I p ‾ \begin{matrix}T\\\overline{GI_p}\end{matrix} TGIp(rad)用于等截面圆轴,符号看扭矩图上的扭矩的变化,沿纸面向上为正
相对扭转角φ = T l G I p ‾ \begin{matrix}Tl\\\overline{GI_p}\end{matrix} TlGIp(rad)用于等截面圆轴,符号看扭矩图上的扭矩的变化,换算成度时乘 180 ° π \frac{180°}π π180°
扭转变形协调条件φBA = φBC + φCA多扭转角以此类推

弯梁

知识点公式备注
平面假设弯曲变形时横截面仍保持为平面且仍垂直于变形后的轴线
纵向无挤压假设纵向材料之间没有挤压材料的纵向变形只是沿梁轴的单向拉伸或压缩变形
弯矩方程q(x) = F’s(x) = M’'(x)q为荷载集度,Fs为剪力,M为弯矩,上加下减,顺加逆减
在转角桁架中,转角处的弯矩大小连续
弯曲正应力 σ = M y ‾ I z σ=\begin{matrix}\underline{My}\\I_z\end{matrix} σ=MyIz σ m a x = M y m a x ‾ I z = M W z ‾ σ_{max}=\begin{matrix}\underline{My_{max}}\\I_z\end{matrix}=\begin{matrix}M\\\overline{W_z}\end{matrix} σmax=MymaxIz=MWz
挠曲线方程 1 ρ ( x ) ‾ = │ w ′ ′ ( x ) │ [ 1 + ( w ′ ( x ) ) 2 ] 3 2 ‾ = │ M ( x ) │ ‾ E I z \begin{matrix}1\\\overline{ρ(x)}\end{matrix}=\begin{matrix}│w''(x)│\\\overline{[1+(w'(x))^2]^\frac 32}\end{matrix}=\begin{matrix}\underline{│M(x)│}\\EI_z\end{matrix} 1ρ(x)=w′′(x)[1+(w(x))2]23=M(x)EIzρ为曲率半径,可近似为w"(x)= − M ( x ) ‾ E I -\begin{matrix}\underline{M(x)}\\EI\end{matrix} M(x)EI
悬臂梁端部最大挠度 w m a x = q L 4 ‾ 8 E I = F L 3 ‾ 3 E I = M L 2 ‾ 2 E I w_{max}=\begin{matrix}\underline{qL^4}\\8EI\end{matrix}=\begin{matrix}\underline{FL^3}\\3EI\end{matrix}=\begin{matrix}\underline{ML^2}\\2EI\end{matrix} wmax=qL48EI=FL33EI=ML22EIq为全梁均布荷载集度,F为端部剪力,M为端部弯矩,L为梁长
简支梁跨中最大挠度 w m a x = 5 q L 4 384 E I ‾ = F L 3 48 E I ‾ = M L 2 9 3 E I ‾ w_{max}=\begin{matrix}5qL^4\\\overline{384EI}\end{matrix}=\begin{matrix}FL^3\\\overline{48EI}\end{matrix}=\begin{matrix}ML^2\\\overline{9\sqrt 3EI}\end{matrix} wmax=5qL4384EI=FL348EI=ML293 EIq为全梁均布荷载集度,F为跨中剪力,M为端部弯矩,L为梁长
梁的等强度条件令梁上各极大弯曲正应力相等或都 = [σ]可用于同时确定多个梁上最合理参数

弯扭组合

知识点公式备注
截面正应力σ = σN ± σM矩形截面有σ = F N ‾ A ± M y ‾ I z ± M z ‾ I y \begin{matrix}\underline{F_N}\\A\end{matrix}±\begin{matrix}\underline{M_y}\\I_z\end{matrix}±\begin{matrix}\underline{M_z}\\I_y\end{matrix} FNA±MyIz±MzIy,圆截面有σ = F N ‾ A ± M y 2 + M z 2 ‾ I z \begin{matrix}\underline{F_N}\\A\end{matrix}±\begin{matrix}\underline{\sqrt{M_y^2+M_z^2}}\\I_z\end{matrix} FNA±My2+Mz2 Iz凸拉凹压
轴向组合变形ε=εNMtεN为拉压变形(拉正压负),εM为弯曲变形(凸正凹负),εt为温度变形(热胀冷缩)

剪挤

知识点公式备注
剪切强度条件τ = F s ‾ A \begin{matrix}\underline{F_s}\\A\end{matrix} FsA注意找清楚剪切面(平行于Fs)和剪切面数量
挤压强度条件σbs = F P c ‾ A b s \begin{matrix}\underline{F_{Pc}}\\A_{bs}\end{matrix} FPcAbs注意挤压面的数量和形状(垂直于Fs方向的投影面积)
螺栓的剪切面积A = nπdhn为剪切面数量,螺栓的剪切面是直径为d、高为h的圆柱面
螺栓的挤压面积Abs = π 4 \frac{π}{4} 4π(D2-d2)螺栓的挤压面是大径为D、小径为d的圆环面
螺栓的等强度条件τi = τj多个螺栓被剪切时,每个螺栓所受的顺剪切分力= F s n \frac{F_s}n nFs,旋剪切分力= ∑ F s i R i n r i \frac{∑F_{si}R_i}{nr_i} nriFsiRi
弯曲切应力τ(y) = F s S z ∗ ( y ) ‾ b ( y ) I z \begin{matrix}\underline{F_sS^*_z(y)}\\b(y)I_z\end{matrix} FsSz(y)b(y)IzSz*为截面上从ymin到y部分的静矩,b为腹板宽
最大弯曲切应力τmax = F s S z max ⁡ ∗ ‾ b I z = k F s ‾ A \begin{matrix}\underline{F_sS^*_{z\max}}\\bI_z\end{matrix}=\begin{matrix}\underline{kF_s}\\A\end{matrix} FsSzmaxbIz=kFsAk矩形= 3 2 \frac 32 23,k= 4 3 \frac43 34,k=1,k薄壁圆环=2

压杆

知识点符号或公式备注
压挠方程w"(x)= − M ( x ) ‾ E I -\begin{matrix}\underline{M(x)}\\EI\end{matrix} M(x)EI= − F P w ( x ) ‾ E I -\begin{matrix}\underline{F_Pw(x)}\\EI\end{matrix} FPw(x)EI两端铰支时,w(x)=Csinkx,由k2= F P E I \frac{F_P}{EI} EIFP和kL=π解得FPcr= π 2 E I L 2 \frac{π^2EI}{L^2} L2π2EI
长度系数μμ简支梁=1,μ悬臂梁=2,μ固支梁=0.7,μ全固梁=0.5
柔度λ = μ l ‾ i z \begin{matrix}\underline{μl}\\i_z\end{matrix} μliz也叫长细比,λ<λs时用横线公式,λs≤λ<λp时用直线公式,λ<λc时用抛物线公式
可能要分y向压弯和z向压弯分别讨论
在约束相同时,若λzy,则压杆在正视图平面内屈曲
比例极限柔度λp = π 2 E ‾ σ p \sqrt{\begin{matrix}\underline{π^2E}\\σ_p\end{matrix}} π2Eσp 由σp = π 2 E ‾ λ P 2 \begin{matrix}\underline{π^2E}\\λ_P^2\end{matrix} π2EλP2而得,σp为比例极限
大柔度杆欧拉公式Fcr = π 2 E I z ‾ ( μ l ) 2 \begin{matrix}\underline{π^2EI_z}\\(μl)^2\end{matrix} π2EIz(μl)2,σcr = π 2 E ‾ λ 2 \begin{matrix}\underline{π^2E}\\λ^2\end{matrix} π2Eλ2适用于λ ≥ λp的细长杆
屈服极限柔度λs = a − σ s ‾ b \begin{matrix}\underline{a-σ_s}\\b\end{matrix} aσsb由σs=a-bλs而得,σs为屈服极限
中柔度杆临界应力σcr = a-bλ也叫直线公式,适用于λs ≤ λ < λp的中长杆
小柔度杆临界应力σcr = σs适用于λ<λs的粗短杆
修正临界应力σcr = a-bλ2也叫抛物线公式,适用于λ < λc的中长杆
安全系数法Fp F c r ‾ n s t \begin{matrix}\underline{F_{cr}}\\n_{st}\end{matrix} Fcrnst,σcr σ c r ‾ n s t \begin{matrix}\underline{σ_{cr}}\\n_{st}\end{matrix} σcrnst式子为压杆稳定条件,nst为安全系数
折减系数法Fp ≤ φ[F],σcr ≤ φ[σ]φ为折减系数,按柔度查表并插值而得

能量法

知识点符号或公式备注
线弹性体应变能Vε = 1 2 \frac12 21∑FiΔiF、Δ为广义外力和对应广义位移
克拉比隆定理Vε = ∫l [ F N 2 ( x ) d x ‾ 2 E A + k F s 2 ( x ) d x ‾ 2 G A + M 2 ( x ) d x ‾ 2 E I + T 2 ( x ) d x ‾ 2 G I p ] [\begin{matrix}\underline{F_N^2(x)\mathrm{d}x}\\2EA\end{matrix}+\begin{matrix}\underline{kF_s^2(x)\mathrm{d}x}\\2GA\end{matrix}+\begin{matrix}\underline{M^2(x)\mathrm{d}x}\\2EI\end{matrix}+\begin{matrix}\underline{T^2(x)\mathrm{d}x}\\2GI_p\end{matrix}] [FN2(x)dx2EA+kFs2(x)dx2GA+M2(x)dx2EI+T2(x)dx2GIp]求组合变形杆件应变能的通式
功的互等定理∑FPiΔij = ∑FQjΔji应变能与力的加载顺序无关
位移互等定理FPiΔij = FQjΔji相当于上式两侧各只有一个力
卡氏第二定理Δi = ∂ V ε ‾ ∂ F i \begin{matrix}\underline{∂V_ε}\\∂F_i\end{matrix} VεFiF,Δ为广义力和对应广义位移
莫尔积分法/单位荷载法Δ = ∑ ∫ l [ F N i F N i ( x ) ‾ ‾ E i A i + M i M i ( x ) ‾ ‾ E i I z i + T i T i ( x ) ‾ ‾ G i I p i ] ∑∫_l[\begin{matrix}\underline{F_{Ni}\overline{F_{Ni}(x)}}\\E_iA_i\end{matrix}+\begin{matrix}\underline{M_i\overline{ M_i(x)}}\\E_iI_{z_i}\end{matrix}+\begin{matrix}\underline{T_i\overline{T_i(x)}}\\G_iI_{pi}\end{matrix}] l[FNiFNi(x)EiAi+MiMi(x)EiIzi+TiTi(x)GiIpi]dx F ˉ i \bar F_i Fˉi(x)为仅在x处有单位荷载时的力分布
桁架单位荷载法Δ = ∑ F N i F N i ‾ L i ‾ E i A i ∑\begin{matrix}\underline{F_{Ni}\overline{F_{Ni}}L_i}\\E_iA_i\end{matrix} FNiFNiLiEiAi (最好列F- F ˉ \bar F Fˉ-L-F F ˉ \bar F FˉL表计算) F ˉ N i \bar F_{Ni} FˉNi为仅在Δ方向加单位力时各杆的轴力
曲杆积分Vε = ∫l M 2 ( θ ) d s ‾ 2 E I \begin{matrix}\underline{M^2(θ)\mathrm{d}s}\\2EI\end{matrix} M2(θ)ds2EI,θ = ∫ l M i M i ( x ) ‾ ‾ E I ∫_l\begin{matrix}\underline{M_i\overline{M_i(x)}}\\EI\end{matrix} lMiMi(x)EI积分时,M(θ)为外力对杆上θ处的弯矩,ds=Rdθ

动荷载

知识点公式知识点公式知识点公式
冲击变形假设 F d Δ d ‾ = G Δ s t ‾ \begin{matrix}F_d\\\overline{Δ_d}\end{matrix}=\begin{matrix}G\\\overline{Δ_{st}}\end{matrix} FdΔd=GΔst自由落体kdkd = 1+ 1 + 2 h Δ s t ‾ \sqrt{1+\begin{matrix}2h\\\overline{Δ_{st}}\end{matrix}} 1+2hΔst 铅垂冲击kdkd = 1+ 1 + v 2 g Δ s t ‾ \sqrt{1+\begin{matrix}v^2\\\overline{gΔ_{st}}\end{matrix}} 1+v2gΔst
动荷载系数kd = Δ d Δ s t ‾ = F d G ‾ = σ d ‾ σ s t \begin{matrix}Δ_d\\\overline{Δ_{st}}\end{matrix}=\begin{matrix}F_d\\\overline{G}\end{matrix}=\begin{matrix}\underline{σ_d}\\σ_{st}\end{matrix} ΔdΔst=FdG=σdσst突加荷载kdkd = 2水平冲击kdkd = v 2 g Δ s t ‾ \sqrt{\begin{matrix}v^2\\\overline{gΔ_{st}}\end{matrix}} v2gΔst

交变应力

交变应力

其它

学科相关知识
测试技术电桥:电桥可能出现在用电阻应变片测应变环节
测试技术电桥平衡方程: u o = ( R 1 R 1 + R 2 ‾ − R 4 R 3 + R 4 ‾ ) u i = R 1 R 3 − R 2 R 4 ( R 1 + R 2 ) ( R 3 + R 4 ) ‾ u i u_o=(\begin{matrix}R_1\\\overline{R_1+R_2}\end{matrix}-\begin{matrix}R_4\\\overline{R_3+R_4}\end{matrix})u_i=\begin{matrix}R_1R_3-R_2R_4\\\overline{(R_1+R_2)(R_3+R_4)}\end{matrix}u_i uo=(R1R1+R2R4R3+R4)ui=R1R3R2R4(R1+R2)(R3+R4)ui
测试技术零值法: IG = 0⇒ R1R3=R2R4
测试技术偏值法的连接方式有半桥单臂(R1变)、半桥双臂(R1,R2变)、全桥双臂(四电阻全变)四种
测试技术偏值法中把 Ri 换成 Ri+ΔRi,如半桥单臂测量法中Δuo=uo(R1+ΔR1,R2,R3,R4)-uo(R1,R2,R3,R4)
测试技术应变片读数:半桥双臂连接时 ε ˉ \bar ε εˉ12,全桥双臂连接时 ε ˉ \bar ε εˉ1234
机械原理tan(螺旋升角)=螺距÷螺周长= s π d \frac s{πd} πds
流体力学流体不提供切应力
  • 8
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值