惯性积计算实例_材料力学中关于截面形状的基本概念: 静矩,惯性矩,截面模量...

本文介绍了材料力学中截面形状对结构计算的影响,重点讲解了静矩、惯性矩、截面模量等概念。静矩是截面形状参数,惯性矩则描述截面抵抗弯曲的性质。惯性矩与面积矩有区别,惯性半径、平行移轴定理、极惯性矩和主惯性矩等概念进一步阐述了惯性的几何属性。截面模量是抗弯强度和抗扭强度的重要指标,常用于结构设计和工程计算中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

材料力学主要研究的对象是杆件和梁,那么这些结构的截面形状是如何影响结构的计算的,体现在哪些参数上。下面主要介绍下。

静矩: 静矩(面积乘以面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩:

0ab5712ad4587431b9fc9d8fe408fe13.png

静矩是截面形状参数,是构件的一个重要的截面特性。平面图形的面积A与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。一般用S来表示。静距的数值可能为正也可能为负,也可能为0,静矩的量纲为长度的3次方,也就是L^3(mm^3或m^3)。有时候又称为截面面积矩。

注意:

惯性矩是乘以距离的二次方,静矩是乘以距离的一次方,惯性矩和面积矩(静矩)是有区别的。

惯性矩:(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。惯性矩的国际单位为(m^4),恒为正值,其量纲是长度的四次方。即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。

f3982de293f3a58b874cef56a88695fd.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值