【B++】求极限例题大赏:数列和/积

连加

【BV1eV411U7ht】积
lim ⁡ n → + ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) \lim\limits_{n→+∞}(\frac1{n+1}+\frac1{n+2}+⋯+\frac1{n+n}) n+lim(n+11+n+21++n+n1)
= lim ⁡ n → + ∞ 1 n ( 1 1 + 1 n + 1 1 + 2 n + ⋯ + 1 1 + n n ) =\lim\limits_{n→+∞}\frac1n(\frac1{1+\frac1n}+\frac1{1+\frac2n}+⋯+\frac1{1+\frac nn}) =n+limn1(1+n11+1+n21++1+nn1)
= ∫ 0 1 d x 1 + x =∫_0^1\frac{\mathrm dx}{1+x} =011+xdx
= ln ⁡ 2 =\ln2 =ln2

【BV1hN4y1F79E】积
lim ⁡ n → + ∞ ( 1 + 2 + ⋯ + n ) ( 1 1 + 1 2 + ⋯ + 1 n ) n ( n + 1 ) \lim\limits_{n→+∞}\frac{(\sqrt1+\sqrt2+⋯+\sqrt n)(\frac1{\sqrt1}+\frac1{\sqrt2}+⋯+\frac1{\sqrt n})}{n(n+1)} n+limn(n+1)(1 +2 ++n )(1 1+2 1++n 1)
= lim ⁡ n → + ∞ ( ∫ 1 n t d t ) ( ∫ 1 n 1 t d t ) n ( n + 1 ) =\lim\limits_{n→+∞}\frac{(∫_1^n\sqrt t\mathrm dt)(∫_1^n\frac1{\sqrt t}\mathrm dt)}{n(n+1)} =n+limn(n+1)(1nt dt)(1nt 1dt)
= lim ⁡ n → + ∞ 2 3 n 3 2 ⋅ 2 n n ( n + 1 ) =\lim\limits_{n→+∞}\frac{\frac23n^\frac32·2\sqrt n}{n(n+1)} =n+limn(n+1)32n232n
= lim ⁡ n → + ∞ 4 3 n 2 n ( n + 1 ) =\lim\limits_{n→+∞}\frac43\frac{n^2}{n(n+1)} =n+lim34n(n+1)n2
= 4 3 =\frac43 =34

【BV1r3411G7DJ】【BV1wb4y1472j】积洛
lim ⁡ n → + ∞ 1 + 1 2 + ⋯ + 1 n ln ⁡ ( 1 + n ) \lim\limits_{n→+∞}\frac{1+\frac12+⋯+\frac1n}{\ln(1+n)} n+limln(1+n)1+21++n1
= lim ⁡ n → + ∞ ∫ 1 n 1 t d t ln ⁡ ( 1 + n ) =\lim\limits_{n→+∞}\frac{∫_1^n\frac1t\mathrm dt}{\ln(1+n)} =n+limln(1+n)1nt1dt
= lim ⁡ n → + ∞ 1 n 1 1 + n =\lim\limits_{n→+∞}\frac{\frac1n}{\frac1{1+n}} =n+lim1+n1n1
= 1 =1 =1

【BV1Ap4y1s7FP】积洛指洛
lim ⁡ n → + ∞ 1 + 2 + ⋯ + n n n \lim\limits_{n→+∞}\frac{1+\sqrt2+⋯+\sqrt[n]n}n n+limn1+2 ++nn
= lim ⁡ n → + ∞ ∫ 1 n t t d t n =\lim\limits_{n→+∞}\frac{∫_1^n\sqrt[t]t\mathrm dt}n =n+limn1ntt dt
= lim ⁡ n → + ∞ n 1 n =\lim\limits_{n→+∞}n^\frac1n =n+limnn1
= lim ⁡ n → + ∞ e ln ⁡ n n =\lim\limits_{n→+∞}e^\frac{\ln n}n =n+limenlnn
= e 0 =e^0 =e0
= 1 =1 =1

【BV1HP4y1o7bx】积洛
lim ⁡ t → 1 − 1 − t ( 1 + t 1 2 + t 2 2 + t 3 2 + ⋯ ) \lim\limits_{t→1^-}\sqrt{1-t}(1+t^{1^2}+t^{2^2}+t^{3^2}+⋯) t1lim1t (1+t12+t22+t32+)
= lim ⁡ t → 1 − 1 − t ∫ 0 + ∞ t x 2 d x =\lim\limits_{t→1^-}\sqrt{1-t}∫_0^{+∞}t^{x^2}\mathrm dx =t1lim1t 0+tx2dx
= lim ⁡ t → 1 − 1 − t ∫ 0 + ∞ e x 2 ln ⁡ t d x =\lim\limits_{t→1^-}\sqrt{1-t}∫_0^{+∞}e^{x^2\ln t}\mathrm dx =t1lim1t 0+ex2lntdx
因为 ∫ 0 + ∞ e − x 2 d x = π 2 ∫_0^{+∞}e^{-x^2}\mathrm dx=\frac{\sqrtπ}2 0+ex2dx=2π ,换元可得 ∫ 0 + ∞ e − k x 2 d x = π 2 1 k ∫_0^{+∞}e^{-kx^2}\mathrm dx=\frac{\sqrtπ}2\sqrt\frac1k 0+ekx2dx=2π k1
所以原式 = π 2 lim ⁡ t → 1 − 1 − t − ln ⁡ t =\frac{\sqrtπ}2\sqrt{\lim\limits_{t→1^-}\frac{1-t}{-\ln t}} =2π t1limlnt1t
= π 2 lim ⁡ t → 1 − − 1 − 1 t =\frac{\sqrtπ}2\sqrt{\lim\limits_{t→1^-}\frac{-1}{-\frac1t}} =2π t1limt11
= π 2 =\frac{\sqrtπ}2 =2π

【BV1KD4y1H7MQ】积
lim ⁡ n → + ∞ ( 1 4 n + 1 + 1 4 n + 2 + ⋯ + 1 4 n + 2 n ) \lim\limits_{n→+∞}(\frac1{4n+1}+\frac1{4n+2}+⋯+\frac1{4n+2n}) n+lim(4n+11+4n+21++4n+2n1)
= lim ⁡ n → + ∞ 1 n ( 1 4 + 1 n + 1 4 + 2 n + ⋯ + 1 4 + 2 n n ) =\lim\limits_{n→+∞}\frac1n(\frac1{4+\frac1n}+\frac1{4+\frac2n}+⋯+\frac1{4+\frac{2n}n}) =n+limn1(4+n11+4+n21++4+n2n1)
= ∫ 0 2 d x 4 + x =∫_0^2\frac{\mathrm dx}{4+x} =024+xdx
= [ ln ⁡ ( x + 4 ) ] 0 2 =[\ln(x+4)]_0^2 =[ln(x+4)]02
= ln ⁡ 3 − ln ⁡ 2 =\ln3-\ln2 =ln3ln2

【BV1PU4y127bK】积洛
lim ⁡ n → + ∞ 1 k + 2 k + ⋯ + n k n k + 1 \lim\limits_{n→+∞}\frac{1^k+2^k+⋯+n^k}{n^{k+1}} n+limnk+11k+2k++nk
= lim ⁡ n → + ∞ ∫ 1 t t k d t n k + 1 =\lim\limits_{n→+∞}\frac{∫_1^tt^k\mathrm dt}{n^{k+1}} =n+limnk+11ttkdt
= lim ⁡ n → + ∞ n k ( k + 1 ) n k =\lim\limits_{n→+∞}\frac{n^k}{(k+1)n^k} =n+lim(k+1)nknk
= 1 k + 1 =\frac1{k+1} =k+11,且k>-1时收敛

【BV1Ty4y17754】积
lim ⁡ n → + ∞ 1 + 2 + ⋯ + n n ( 1 + 2 + ⋯ + n ) \lim\limits_{n→+∞}\frac{\sqrt1+\sqrt2+⋯+\sqrt n}{\sqrt{n(1+2+⋯+n)}} n+limn(1+2++n) 1 +2 ++n
= lim ⁡ n → + ∞ ∫ 1 n t d t n ∫ 0 n t d t =\lim\limits_{n→+∞}\frac{∫_1^n\sqrt t\mathrm dt}{\sqrt n\sqrt{∫_0^nt\mathrm dt}} =n+limn 0ntdt 1nt dt
= lim ⁡ n → + ∞ 2 3 n 3 2 n 1 2 n 2 =\lim\limits_{n→+∞}\frac{\frac23n^\frac32}{\sqrt n\sqrt{\frac12n^2}} =n+limn 21n2 32n23
= 2 3 2 =\frac23\sqrt2 =322

连乘

【BV1aT41117ms】指积
lim ⁡ n → + ∞ ( n + 1 ) ( n + 2 ) ⋯ 2 n n n \lim\limits_{n→+∞}\frac{\sqrt[n]{(n+1)(n+2)⋯2n}}n n+limnn(n+1)(n+2)2n
= lim ⁡ n → + ∞ e 1 n ln ⁡ ( n + 1 ) + 1 n ln ⁡ ( n + 2 ) + ⋯ + 1 n ln ⁡ 2 n − ln ⁡ n =\lim\limits_{n→+∞}e^{\frac1n\ln(n+1)+\frac1n\ln(n+2)+⋯+\frac1n\ln2n-\ln n} =n+limen1ln(n+1)+n1ln(n+2)++n1ln2nlnn
= lim ⁡ n → + ∞ e 1 n ln ⁡ ( 1 + 1 n ) + 1 n ln ⁡ ( 1 + 2 n ) + ⋯ + 1 n ln ⁡ ( 1 + n n ) =\lim\limits_{n→+∞}e^{\frac1n\ln(1+\frac1n)+\frac1n\ln(1+\frac2n)+⋯ +\frac1n\ln(1+\frac nn)} =n+limen1ln(1+n1)+n1ln(1+n2)++n1ln(1+nn)
= e ∫ 0 1 ln ⁡ ( 1 + x ) d x =e^{∫_0^1\ln(1+x)\mathrm dx} =e01ln(1+x)dx
= e [ ( 1 + x ) ln ⁡ ( 1 + x ) − x ] 0 1 =e^{[(1+x)\ln(1+x)-x]^1_0} =e[(1+x)ln(1+x)x]01
= 4 e =\frac4e =e4

【BV1ch411D7pT】
lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n \lim\limits_{x→0}\cos\frac x2\cos\frac x{2^2}⋯\cos\frac x{2^n} x0limcos2xcos22xcos2nx
= lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n ⋅ sin ⁡ x 2 n ⋅ 1 sin ⁡ x 2 n =\lim\limits_{x→0}\cos\frac x2\cos\frac x{2^2}⋯\cos\frac x{2^n}·\sin\frac x{2^n}·\frac1{\sin\frac x{2^n}} =x0limcos2xcos22xcos2nxsin2nxsin2nx1
= 1 2 lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n − 1 ⋅ sin ⁡ x 2 n − 1 ⋅ 1 sin ⁡ x 2 n =\frac12\lim\limits_{x→0}\cos\frac x2\cos\frac x{2^2}⋯\cos\frac x{2^{n-1}}·\sin\frac x{2^{n-1}}·\frac1{\sin\frac x{2^n}} =21x0limcos2xcos22xcos2n1xsin2n1xsin2nx1
= 1 2 2 lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n − 2 ⋅ sin ⁡ x 2 n − 2 ⋅ 1 sin ⁡ x 2 n =\frac1{2^2}\lim\limits_{x→0}\cos\frac x2\cos\frac x{2^2}⋯\cos\frac x{2^{n-2}}·\sin\frac x{2^{n-2}}·\frac1{\sin\frac x{2^n}} =221x0limcos2xcos22xcos2n2xsin2n2xsin2nx1
= ⋯ =⋯ =
= 1 2 n lim ⁡ x → 0 sin ⁡ x sin ⁡ x 2 n =\frac1{2^n}\lim\limits_{x→0}\frac{\sin x}{\sin\frac x{2^n}} =2n1x0limsin2nxsinx
= 1 2 n ⋅ 2 n =\frac1{2^n}·2^n =2n12n
= 1 =1 =1

【BV1ho4y1D7fS】指积
lim ⁡ n → + ∞ n ! n n \lim\limits_{n→+∞}\frac{\sqrt[n]{n!}}n n+limnnn!
= lim ⁡ n → + ∞ e 1 n ln ⁡ n ! − ln ⁡ n =\lim\limits_{n→+∞}e^{\frac1n\ln n!-\ln n} =n+limen1lnn!lnn
= lim ⁡ n → + ∞ e 1 n ( ln ⁡ 1 n + ln ⁡ 2 n + ⋯ + ln ⁡ n n ) =\lim\limits_{n→+∞}e^{\frac1n(\ln\frac1n+\ln\frac2n+⋯+\ln\frac nn)} =n+limen1(lnn1+lnn2++lnnn)
= e ∫ 0 1 ln ⁡ x d x =e^{∫_0^1\ln x\mathrm dx} =e01lnxdx
= 1 e =\frac1e =e1

【BV1hA411o7co】指积洛
lim ⁡ n → + ∞ ( n 2 + 1 ) ( n 2 + 2 ) ⋯ ( n 2 + n ) ( n 2 − 1 ) ( n 2 − 2 ) ⋯ ( n 2 − n ) \lim\limits_{n→+∞}\frac{(n^2+1)(n^2+2)⋯(n^2+n)}{(n^2-1)(n^2-2)⋯(n^2-n)} n+lim(n21)(n22)(n2n)(n2+1)(n2+2)(n2+n)
= lim ⁡ n → + ∞ e n [ 1 n ln ⁡ ( n + 1 n n − 1 n ) + 1 n ln ⁡ ( n + 2 n n − 2 n ) + ⋯ + 1 n ln ⁡ ( n + n n n − n n ) ] =\lim\limits_{n→+∞}e^{n[\frac1n\ln(\frac{n+\frac1n}{n-\frac1n})+\frac1n\ln(\frac{n+\frac2n}{n-\frac2n})+⋯+\frac1n\ln(\frac{n+\frac nn}{n-\frac nn})]} =n+limen[n1ln(nn1n+n1)+n1ln(nn2n+n2)++n1ln(nnnn+nn)]
= lim ⁡ n → + ∞ e n ∫ 0 1 ln ⁡ ( n + t n − t ) d t =\lim\limits_{n→+∞}e^{n∫_0^1\ln(\frac{n+t}{n-t})\mathrm dt} =n+limen01ln(ntn+t)dt
= lim ⁡ n → + ∞ e n [ ( n + t ) ln ⁡ ( n + t ) + ( n − t ) ln ⁡ ( n − t ) ] 0 1 =\lim\limits_{n→+∞}e^{n[(n+t)\ln(n+t)+(n-t)\ln(n-t)]_0^1} =n+limen[(n+t)ln(n+t)+(nt)ln(nt)]01
= lim ⁡ n → + ∞ e n 2 ln ⁡ n 2 − 1 n 2 + n ln ⁡ n + 1 n − 1 =\lim\limits_{n→+∞}e^{n^2\ln\frac{n^2-1}{n^2}+n\ln\frac{n+1}{n-1}} =n+limen2lnn2n21+nlnn1n+1
= lim ⁡ n → 0 + e ln ⁡ ( 1 − n 2 ) n 2 + ln ⁡ ( 1 + n ) − ln ⁡ ( 1 − n ) n =\lim\limits_{n→0^+}e^{\frac{\ln(1-n^2)}{n^2}+\frac{\ln(1+n)-\ln(1-n)}n} =n0+limen2ln(1n2)+nln(1+n)ln(1n)
= lim ⁡ n → 0 + e − 2 n 2 n ( 1 − n 2 ) + 1 1 + n + 1 1 − n =\lim\limits_{n→0^+}e^{\frac{-2n}{2n(1-n^2)}+\frac1{1+n}+\frac1{1-n}} =n0+lime2n(1n2)2n+1+n1+1n1
= e =e =e

【BV1Pg4y1i7pv】指倒展
lim ⁡ x → ∞ ( x n ( x − 1 ) ( x − 2 ) ⋯ ( x − n ) ) 2 x \lim\limits_{x→∞}(\frac{x^n}{(x-1)(x-2)⋯(x-n)})^{2x} xlim((x1)(x2)(xn)xn)2x
= lim ⁡ x → ∞ e 2 x [ n ln ⁡ x − ln ⁡ ( x − 1 ) − ln ⁡ ( x − 2 ) − ⋯ − ln ⁡ ( x − n ) ] =\lim\limits_{x→∞}e^{2x[n\ln x-\ln(x-1)-\ln(x-2)-⋯-\ln(x-n)]} =xlime2x[nlnxln(x1)ln(x2)ln(xn)]
= lim ⁡ x → ∞ e − 2 x [ ln ⁡ ( 1 − 1 x ) + ln ⁡ ( 1 − 2 x ) + ⋯ + ln ⁡ ( 1 − n x ) ] =\lim\limits_{x→∞}e^{-2x[\ln(1-\frac1x)+\ln(1-\frac2x)+⋯+\ln(1-\frac nx)]} =xlime2x[ln(1x1)+ln(1x2)++ln(1xn)]
= lim ⁡ x → 0 e − 2 x [ ln ⁡ ( 1 − x ) + ln ⁡ ( 1 − 2 x ) + ⋯ + ln ⁡ ( 1 − n x ) ] =\lim\limits_{x→0}e^{-\frac2x[\ln(1-x)+\ln(1-2x)+⋯+\ln(1-nx)]} =x0limex2[ln(1x)+ln(12x)++ln(1nx)]
= lim ⁡ x → 0 e − 2 x ( − x − 2 x − ⋯ − n x + o ( x ) ) =\lim\limits_{x→0}e^{-\frac2x(-x-2x-⋯-nx+o(x))} =x0limex2(x2xnx+o(x))
= lim ⁡ x → 0 e n 2 + n =\lim\limits_{x→0}e^{n^2+n} =x0limen2+n

取整

【BV1pM411t7Y1】
lim ⁡ x → 0 x [ 1 x ] \lim\limits_{x→0}x[\frac1x] x0limx[x1]
= lim ⁡ x → 0 x ( 1 x + C ) , C ∈ R =\lim\limits_{x→0}x(\frac1x+C),C∈R =x0limx(x1+C),CR
= lim ⁡ x → 0 1 + C x , C ∈ R =\lim\limits_{x→0}1+Cx,C∈R =x0lim1+Cx,CR
= 1 =1 =1

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值