数列极限:习题详解

数学分析笔记——总目录

数列极限:习题详解

该博客持续更新中……

基础篇

数列极限的基本概念

关于 N 的取值问题

按照数列极限的定义,要证明 lim ⁡ n → ∞ a n = a \underset{n \rightarrow \infty}{\lim}a_n=a nliman=a,则需要寻找满足条件的 N N N,在原始定义中, N N N 限定为 正序数,即正整数( N ∈ N + N \in \mathbb{N}_{+} NN+)。当然,在实际证明时,会发现, N N N 并不限于正整数。这样的改变并不影响证明过程的正确性。事实上,我们并不会过分关注 N N N 的取值类型,我们关注的是 满足条件的正整数 n n n 是否合乎定义。

例题. \quad 证明 lim ⁡ n → ∞ n n + 3 = 1 \underset{n \rightarrow \infty}{\lim}\frac{n}{n+3}=1 nlimn+3n=1

证明 1:解不等式法

对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ n n + 3 − 1 ∣ = ∣ 3 n + 3 ∣ < ϵ \left|\frac{n}{n+3}-1\right| = \left|\frac{3}{n+3}\right|<\epsilon n+3n1=n+33<ϵ
解得 n > 3 ϵ − 3 n>\frac{3}{\epsilon}-3 n>ϵ33。显然有
3 ϵ − 3 < 3 ϵ \frac{3}{\epsilon}-3<\frac{3}{\epsilon} ϵ33<ϵ3
为保证 N N N 为正整数,取 N = [ 3 ϵ ] + 1 N=\left[\frac{3}{\epsilon}\right]+1 N=[ϵ3]+1,则当 n > N n>N n>N 时,显然成立 ∣ n n + 3 − 1 ∣ < ϵ \left|\frac{n}{n+3}-1\right|<\epsilon n+3n1<ϵ

lim ⁡ n → ∞ n n + 3 = 1 \underset{n \rightarrow \infty}{\lim}\frac{n}{n+3}=1 nlimn+3n=1 得证。

证毕

:严格按照定义证明,就要时刻保证 N N N 是正整数。但是直接取 N = [ 3 ϵ ] N=\left[\frac{3}{\epsilon}\right] N=[ϵ3]也没有错误,只是如果 ϵ \epsilon ϵ 取得足够大时,此时的 N N N 可能为 0 0 0,违反了正整数的设定,而 n > 0 n>0 n>0,自然意为对所有的正整数 n n n 都成立。

证明 2:放大法

对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ n n + 3 − 1 ∣ = ∣ 3 n + 3 ∣ < 3 n < ϵ \left|\frac{n}{n+3}-1\right| = \left|\frac{3}{n+3}\right|<\frac{3}{n}<\epsilon n+3n1=n+33<n3<ϵ
解得 n > 3 ϵ n>\frac{3}{\epsilon} n>ϵ3

N = [ 3 ϵ ] N=\left[\frac{3}{\epsilon}\right] N=[ϵ3]​,则当 n > N n>N n>N​ 时,显然成立 ∣ n n + 3 − 1 ∣ < ϵ \left|\frac{n}{n+3}-1\right|<\epsilon n+3n1<ϵ

lim ⁡ n → ∞ n n + 3 = 1 \underset{n \rightarrow \infty}{\lim}\frac{n}{n+3}=1 nlimn+3n=1 得证。

证毕

例题. \quad 证明: lim ⁡ n → ∞ 3 n 2 n 2 − 3 = 3 \underset{n \rightarrow \infty}{\lim}\frac{3n^2}{n^2-3}=3 nlimn233n2=3

证明:放大法

n ≥ 3 n\ge 3 n3 时,有
∣ 3 n 2 n 2 − 3 − 3 ∣ = ∣ 9 n 2 − 3 ∣ < ∣ 9 n ∣ \left|\frac{3n^2}{n^2-3}-3\right|=\left|\frac{9}{n^2-3}\right|<\left|\frac{9}{n}\right| n233n23=n239<n9
对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ 3 n 2 n 2 − 3 − 3 ∣ = ∣ 9 n 2 − 3 ∣ < ∣ 9 n ∣ < ϵ \left|\frac{3n^2}{n^2-3}-3\right|=\left|\frac{9}{n^2-3}\right|<\left|\frac{9}{n}\right|<\epsilon n233n23=n239<n9<ϵ
解得 n > 9 ϵ n>\frac{9}{\epsilon} n>ϵ9

N = max ⁡ { 3 , 9 ϵ } N=\max\{3,\frac{9}{\epsilon}\} N=max{3,ϵ9},则当 n > N n>N n>N 时,显然成立 ∣ 3 n 2 n 2 − 3 − 3 ∣ < ϵ \left|\frac{3n^2}{n^2-3}-3\right|<\epsilon n233n23<ϵ

lim ⁡ n → ∞ 3 n 2 n 2 − 3 = 3 \underset{n \rightarrow \infty}{\lim}\frac{3n^2}{n^2-3}=3 nlimn233n2=3 得证。

证毕

:按照严格的定义证明,应取 N = max ⁡ { 3 , [ 9 ϵ ] } N = \max \{3,\left[\frac{9}{\epsilon}\right]\} N=max{3,[ϵ9]},但是直接取 N = 9 ϵ N=\frac{9}{\epsilon} N=ϵ9也没有错误,只是此时的 N N N 无法保证正整数的设定,只能保证其为正数。也就是说,实际上, N N N 并不限于正整数,保证其为正数即可。反正不管怎样, n n n 是大于数 N N N 的正整数。

结论
在求解关于 N N N 的不等式时,得到 n > f ( ϵ ) n>f(\epsilon) n>f(ϵ) 的形式,这时无论取 N = [ f ( ϵ ) ] N = \left[f(\epsilon)\right] N=[f(ϵ)] 还是 [ f ( ϵ ) ] + 1 \left[f(\epsilon)\right]+1 [f(ϵ)]+1 或是其它形式,只要满足条件 n > N n>N n>N n n n 满足定义即可。

经典例题

以下几个例题非常有用,在多数情况下,甚至可以作为结论直接使用,不过这些“特殊结论”的证明方式需要有一定的掌握和了解。

例题. \quad α > 0 \alpha>0 α>0,证明 lim ⁡ n → ∞ 1 n α = 0 \underset{n \rightarrow \infty}{\lim}\frac{1}{n^{\alpha}}=0 nlimnα1=0

证明:

对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ 1 n α − 0 ∣ < ϵ \left|\frac{1}{n^{\alpha}}-0\right|<\epsilon nα10<ϵ
解得 n > ( 1 ϵ ) 1 α n>\left(\frac{1}{\epsilon}\right)^{\frac{1}{\alpha}} n>(ϵ1)α1

N = [ ( 1 ϵ ) 1 α ] + 1 N=\left[\left(\frac{1}{\epsilon}\right)^{\frac{1}{\alpha}}\right]+1 N=[(ϵ1)α1]+1,则当 n > N n>N n>N 时,显然成立 ∣ 1 n α − 0 ∣ < ϵ \left|\frac{1}{n^{\alpha}}-0\right|<\epsilon nα10<ϵ

lim ⁡ n → ∞ 1 n α = 0 \underset{n \rightarrow \infty}{\lim}\frac{1}{n^{\alpha}}=0 nlimnα1=0 得证。

证毕

例题. \quad ∣ q ∣ < 1 |q|<1 q<1,证明: lim ⁡ n → ∞ q n = 0 \underset{n \rightarrow \infty}{\lim}q^n=0 nlimqn=0

证明 1:

q = 0 q=0 q=0 时,结论显然成立。

0 < ∣ q ∣ < 1 0<|q|<1 0<q<1 时,对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ q n − 0 ∣ < ϵ \left|q^n-0\right|<\epsilon qn0<ϵ
解得 n > ln ⁡ ϵ ln ⁡ ∣ q ∣ n>\frac{\ln \epsilon}{\ln |q|} n>lnqlnϵ

N = max ⁡ { [ ln ⁡ ϵ ln ⁡ ∣ q ∣ ] , 1 } N=\max \{\left[\frac{\ln \epsilon}{\ln |q|}\right],1\} N=max{[lnqlnϵ],1},则当 n > N n>N n>N 时,显然成立 ∣ q n − 0 ∣ < ϵ \left|q^n-0\right|<\epsilon qn0<ϵ

lim ⁡ n → ∞ q n = 0 \underset{n \rightarrow \infty}{\lim}q^n=0 nlimqn=0 得证。

证毕

证明 2:

q = 0 q=0 q=0 时,结论显然成立。

0 < ∣ q ∣ < 1 0<|q|<1 0<q<1 时, 1 ∣ q ∣ > 1 \frac{1}{|q|}>1 q1>1 显然成立。令 h = 1 ∣ q ∣ − 1 > 0 h = \frac{1}{|q|}-1>0 h=q11>0,则有
∣ q ∣ = 1 1 + h , ∣ q ∣ n = 1 ( 1 + h ) n |q| = \frac{1}{1+h},\quad |q|^n = \frac{1}{(1+h)^n} q=1+h1,qn=(1+h)n1
由不等式 ( 1 + h ) n ≥ 1 + n h (1+h)^n \ge 1+nh (1+h)n1+nh 可得
∣ q ∣ n = 1 ( 1 + h ) n ≤ 1 1 + n h < 1 n h |q|^n = \frac{1}{(1+h)^n} \le \frac{1}{1+nh}<\frac{1}{nh} qn=(1+h)n11+nh1<nh1
对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,令
∣ q ∣ n < 1 n h < ϵ |q|^n<\frac{1}{nh}<\epsilon qn<nh1<ϵ
解得 n > 1 h ϵ n>\frac{1}{h\epsilon} n>hϵ1

N = [ 1 h ϵ ] N=\left[\frac{1}{h\epsilon}\right] N=[hϵ1],则当 n > N n>N n>N 时,显然成立 ∣ q ∣ n < ϵ |q|^n<\epsilon qn<ϵ

lim ⁡ n → ∞ q n = 0 \underset{n \rightarrow \infty}{\lim}q^n=0 nlimqn=0 得证。

证毕

提升篇

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值