(新手入门)中文查阅tensorflow函数文档

本文介绍了TensorFlow中创建和操作张量的基本方法,包括常量、转换、全零和全一张量,以及随机数生成。此外,还涉及张量的数学运算、变量、梯度计算,以及数据处理如one-hot编码。文章进一步讲解了卷积层、BN层、池化层在神经网络中的应用,以及数据增强技术提高模型泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创建一个张量

tf.constant(张量内容,dtype=数据类型(可选))

将numpy的数据类型转换为Tensor数据类型

tf.convert_to_tensor(数据名,dtype=数据类型(可选))

创建全为0的张量 维度:

tf.zeros(维度) 一维 直接写个数

创建全为1的张量 二维 用【行,列】

tf.ones(维数) 多维 用【n,m,j,k........】

创建全为指定值的张量

tf.fill(维度,指定值)

生成正态分布的随机数,默认均值为0,标椎差为1

tf.random.normal(维度,mean=均值,stddev=标椎差)

生成截断式正态分布的随机数

tf.random.truncated_normal(维度,mean=均值,stddev=标椎差),在tf.truncated_normal中如果随机生成数据的取值在(-2+2)之外则重新进行生成,保证了生成值在均值附近。

生成均匀分布随机数

tf.random.uniform(维度, minval=最小值, maxval=最大值)

强制tensor转换为该数据类型

tf.cast(张量名,dtype=数据类型)

计算张量维度上元素的最小值

tf.reduce_min(张量名)

计算张量维度上元素的最大值

tf.reduce_max(张量名)

理解axis

在一个二维张量或数组中,可以通过调整axis等于0或1控制执行维度。axis=0代表跨性行(经度,down),而axis=1代表跨列(维度,across)。如果不指定axis。则所有元素参与计算。

计算张量沿着指定维度的平均值

tf.reduce_mean(张量名,axis=操作轴)

计算张量沿着指定维度的和

tf.reduce_sum(张量名,axis=操作轴)

常用函数

tf.Variable()将变量标记为“可训练”,被标记的变量会在反向传播中记录梯度信息。神经网络训练中,常用该函数标记待训练参数。

实现两个张量的对应元素相加

tf.add(张量1,张量2) 只有维度相同的张量才可以做四则运算

实现两个张量的对应元素相减

tf.substract(张量1,张量2)

实现两个张量的对应元素相乘

tf.multiply(张量1,张量2)

实现两个张量的对应元素除

tf.divide(张量1,张量2)

计算某个张量的平方

tf.square(张量名)

计算某个张量的n次方

tf.pow(张量名,n次方数)

计算某个张量的开方

tf.sqrt(张量名)

实现两个矩阵的相乘

tf.matmul(矩阵1,矩阵2)

切分传入张量的第一维度,生成输入特征/标签对,构建数据集

data = tf.data.Dataset.from_tensor_slices((输入特征,标签))(Numpy和Tensor格式都可用该语句读入数据)

with结构记录计算过程,gradient求出张量的梯度

with tf.GradientTape() as tape:

若干个计算过程

grad=tape.gradient函数,对谁求导)

enumerate是python的内建函数,它可遍历每个元素(如列表、元组或字符串),组合为:索引 元素,常在for循环中使用。

tf.one_hot()函数将待转换数据,转换为one_hot形式的数据输出。

tf.one_hot(待转换数据,depth=几分类)

赋值操作,更新参数的值并返回。

调用assign_sub前,先用tf.Variable定义变量w为可训练(可自更新)

w.assign_sub(w要自减的内容)

返回张量沿指定维度最大值的索引

tf.argmax(张量名,axis=操作轴)

条件语句真返回A,条件语句假返回B

tf.where(条件语句,真返回A,假返回B)

将两个数组按垂直方向叠加

np.vstack(数组1,数组2)

np.mgrid[起始值:结束值:步长,起始值:结束值:步长,......]

x.ravel() 将x变为一维数组,“把.前变量拉直”

np.c_[ ]使返回的间隔数值点配对

np.c_[数组1,数组2,.......]

数据增强

image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(rescale = 所有数据将乘以该数值 rotation_ange = 随机旋转角度数范围 width_shift_range = 随机宽度偏移量 height_shift_range = 随机高度偏移量 水平翻转:horizontal_filp = 是否随机水平翻转 随机缩放: zoom_range = 随机缩放的范围【1-n,1+n】)

TF描述卷积层

tf.keras.layers.Conv2D(

filters = 卷积核个数,

kernel_size =卷积核尺寸,#正方形写核长整数或(核高h,核宽w)

strides =滑动步长,#横纵向相同写步长整数,或(纵向步长h,横向步长w),默认1

padding = “same”or“valid”#使用全零填充是“same”,不使用是“valid”(默认)

activation= “relu”or“sigmoid”or“tanh”or“softmax”等

input_shape = (高,宽,通道数) #输入特征图维度,可省

)

BN层位于卷积之后,激活层之前。

tf.keras.layers.BatchNormalization()

池化用于减少特征数据量,最大值池化可提取图片纹理,均值池化可保留背景特征。

tf.keras.layers.MaxPool2D(

pool_size = 池化核尺寸,#正方形写核长整数,或(核高h,核宽w)

strides=池化步长,#步长整数,或(纵向步长h,横向步长w),默认为pool_size

padding=“valid”or“same”#使用全零填充是“same”,不使用“valid”(默认)

)

tf.keras.layers.AveragePooling2D(

pool_size=池化核尺寸,#正方形写核长整数,或(核高h,核宽w)

strides=池化步长,#步长整数,或(纵向步长h,横向步长w),默认为pool_size

padding=“valid”or“same”#使用全零填充是“same”,不使用是“valid”(默认)

)

在神经网络训练时,将一部分神经元按照一定概率从神经网络中暂时舍弃。神经网络使用时,被舍弃的神经元恢复链接。

tf.keras.layers.Dropout(舍弃的概率)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值