8、基于 RoBERTa - GPT2 的共情对话生成技术解析

基于 RoBERTa - GPT2 的共情对话生成技术解析

1. 共情对话生成概述

在自然语言处理领域,共情对话生成是一个重要的研究方向。它旨在让对话系统能够感知说话者的情感,并给出富有共情的回应,更贴近真实的人际交流场景。

1.1 相关工作回顾

  • 开放域和闲聊对话模型 :此前已有众多研究聚焦于开放域和闲聊对话模型。随着公开数据集的增多以及数据驱动学习方法的兴起,一些工作致力于让闲聊对话更具吸引力。例如,部分研究通过基于人物画像来生成回复,以提升回复的个性化程度,但这类个性化对话模型往往难以考虑对话伙伴的感受。
  • 情感和共情对话生成 :现有的情感对话模型通常依据预定义的情感来生成回复,而共情对话模型则能够感知说话者的情感,无需额外明确确定回应的情感类型,更符合现实交流场景。近年来,有不少关于共情对话生成的研究成果,如创建基准和数据集、提出多分辨率交互式模型、多类型知识感知框架等。同时,也有基于预训练模型的研究,如 BERT2BERT、EmpTransfo 和 CAiRE 等。

1.2 数据集的重要性

在共情对话生成中,带有情感标签的语料库起着关键作用。以下是一些相关数据集:
| 数据集名称 | 特点 | 问题 |
| — | — | — |
| DailyDialog | 对每个话语进行手动情感标注 | 仅有 5%的话语有不同的情感标签,数据分布极不均衡 |
| EmotionLines | 从电视剧和人际聊天中收集,每个话语标注七种情感类别之一 | 仅有 16.68%的

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
【顶级EI复现】【最新EI论文】低温环境下考虑电池寿命的微电网优化调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI复现】【最新EI论文】低温环境下考虑电池寿命的微电网优化调度(Matlab代码实现)》的技术文档,重点围绕在低温环境下,结合电池寿命衰减因素对微电网系统进行优化调度的研究。该研究通过建立数学模型,综合考虑风光储、柴油、燃气等多种能源形式以及电网交互关系,利用Matlab编程实现优化算法(如内点法、多目标粒子群算法等),完成对微电网运行成本、能源效率与电池使用寿命之间的多目标协同优化。文中强调了实际寒潮场景下的V2G调度数据应用,并提供了完整的仿真代码与数据集支持,具有较强的工程复现价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、储能系统优化等相关领域的工程技术人员;尤其适合希望复现高水平EI论文成果的用户; 使用场景及目标:①用于低温环境下微电网能量管理系统的建模与仿真;②支撑考虑电池老化机制的储能优化调度研究;③服务于学术论文复现、课题项目开发及智能电网优化算法验证; 阅读建议:建议结合提供的网盘资源(包括YALMIP工具包、完整代码与数据集)进行实践操作,重点关注目标函数构建、约束条件设置及多目标优化求解过程,建议在Matlab环境中调试代码以深入理解算法实现细节与系统响应特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值