传感器阵列波达方向估计与卫星调度优化相关研究
1. 传感器阵列波达方向估计
在传感器阵列的波达方向(DOA)估计中,涉及到多种算法和技术,下面将详细介绍相关内容。
1.1 算法初始参数选择
在算法开始时,所选的 (L(t)) 可能会大于可用测量值的数量。因此,应将 (L(t)) 选择为 (\min{L(t), t})。
1.2 基于子空间的波达方向跟踪
在时刻 (t),可以使用信号子空间矩阵 (W(t)) 结合基于子空间的高分辨率方法来确定波达方向。
- MUSIC 算法 :对于 MUSIC 算法的实现,子空间需要是正交归一的。设 (U_S(t)) 为正交归一化的信号子空间(如果 (W(t)) 是正交归一的,则 (U_S(t)) 等于 (W(t))),(U_N(t)) 为噪声子空间,则有 (U_S(t)U_S^H(t) + U_N(t)U_N^H(t) = I)。因此,MUSIC 谱由下式给出:
[P(\theta, t) = \frac{1}{a^H(\theta)U_N(t)U_N^H(t)a(\theta)} = \frac{1}{a^H(\theta)(I - U_S(t)U_S^H(t))a(\theta)}]
- ESPRIT 算法 :当阵列几何结构具有平移不变性时,可应用更高效的 DOA 估计方法。例如,对于均匀线性阵列(ULA),可以使用 ESPRIT 算法。具体步骤如下:
1. 构建由 (W(t)) 的前 (M - 1) 列和后 (M - 1) 列组成的两个子矩阵 (U_{S1}(t)) 和 (U_{
超级会员免费看
订阅专栏 解锁全文
2041

被折叠的 条评论
为什么被折叠?



