阅读论文:基于稀疏阵列的波达方向估计研究

目录

摘要

1 绪论

1.1 课题背景及研究意义

1.2 课题研究现状及分析

1.2.1 空间谱估计的研究现状

1.2.2 稀疏阵列的研究现状

2 稀疏阵列及传统波达方向估计原理及仿真

2.1 稀疏阵列信号模型

2.1.1 互质阵列信号模型

2.1.2 嵌套阵列信号模型

2.2 传统DOA估计算法

2.2.1 MUSIC算法原理及仿真

2.3 本章小结

3 基于稀疏阵列的波达方向估计

3.1 基于稀疏阵列的传统DOA估计算法

3.1.1 基于互质阵列的传统DOA估计算法

3.1.2 基于嵌套阵列的传统DOA估计算法

未完待续


摘要

稀疏阵列、高自由度、少阵元数

对稀疏阵列的特点,将协方差矩阵进行向量化,以此形成新的入射信号模型,再进行 DOA 估计,来提高估计的精度

1 绪论

1.1 课题背景及研究意义

稀疏阵列的优点有以下几点:1)当阵列数量相同,稀疏阵列的孔径更大,可以提高测向精度,同时拥有更加多的自由度,使最大可测信源数增多;2)当阵列孔径相同时,稀疏阵列包含的阵元数更少,以此来降低天线的建造成本; 3)由于阵元间距的多变,稀疏阵列可以减少阵元间的互耦等影响,提高测向性能。

1.2 课题研究现状及分析

1.2.1 空间谱估计的研究现状

多重信号分类法:信号为互不相干的窄带信号,满足此前提,便可实现对入射信号的无偏估计,但若不满足此条件,特别是当信号相干或者角度相隔较近时,MUSIC 算法将完全失效。

1.2.2 稀疏阵列的研究现状

稀疏阵列主要分为两种,第一种是阵元数一定,排列方式类似于从均匀线阵中按比例抽取,所以间距都为最小阵元间距得整数倍;第二种稀疏阵列是将阵元随机分布在孔径当中,间距不存在规律性。与均匀阵列相比,稀疏阵列的好处是旁瓣低、阵列的数量较少,故障率较低,天线系统成本较低。

解空间的自由度:解空间的自由度,通常指的是在一个线性方程组中,解向量可以变化的维数。在齐次线性方程组中,如果系数矩阵的秩为 ( r ),而未知数的总数为 ( n ),那么解空间的维数(即自由度)就是 ( n-r )。这意味着有 ( n-r ) 个独立的方向,解向量可以在这些方向上任意变化而不影响方程组的解的性质

与均匀阵列相比,稀疏阵列的好处是旁瓣低、阵列的数量较少,故障率较低,天线系统成本较低

稀疏阵列的间距包含多种尺度,还可能大于半波长,所以方向图可能出现畸变,需要对方向图的优化算法进行探索

互质阵列和嵌套阵列是稀疏阵列的两种特殊情况,都是由间距不同的均匀阵列穿插组合而成。其中互质阵列要求两子阵阵元间距为互质数,嵌套阵列则要求两子阵相互嵌套。

2 稀疏阵列及传统波达方向估计原理及仿真

2.1 稀疏阵列信号模型

稀疏阵列有两种特殊形式——互质阵列及嵌套阵列,它们在稀疏分布的基础上,对阵元位置的排列有特殊的要求。

2.1.1 互质阵列信号模型

互质阵列是由两个间隔不等的均匀线性阵列穿插组合而成,一个含有M个阵元,间距为Nd,另一个含有N个阵元间距为Md ,M 和 N 是互质的两个数。其中d为最小阵元间距。

假设 K 个不相关的窄带远场信号以入射角\theta_{k}\left(k=1,2\cdots K\right),入射到阵列上,且满足\theta_k\in\left(-90^\circ,90^\circ\right),\quad d\leq\lambda_{\min}/2,\lambda_{\min}为最小信号波长。第 k 个信号源的导向矢量可以表示为:a(\theta_k)=[1,e^{-j2\pi Md/\lambda\sin\theta_k},e^{-j2\pi Nd/\lambda\sin\theta_k}......,e^{-j2\pi(M-1)Nd/\lambda\sin\theta_k}]^T

阵列流型为:A=[a(\theta_1),a(\theta_2),......,a(\theta_K)]
阵列接收数据:x(t)=\sum_{k=1}^Ka(\theta_k)s_k(t)+n(t)=As(t)+n(t)

\mathbf{s}(t)=[\mathbf{s}_1(t),\mathbf{s}_2(t),\mathbf{s}_3(t),......,\mathbf{s}_K(t)]为 K×1 维向量;A 为 N×K 维的矩阵;n(t)为 N×1 维高斯白噪声。
为了比较阵列的性能,一般通过方向图增益来体现阵列的性能。令 w 表示天线的加权解,则信号的阵列天线的方向图可表示为:F(\theta)=w^Ha(\theta)其中:w=[1,1,...,1]^{\mathrm{T}}取模做归一化处理,对处理后的结果取对数,即可求得方向图增益:G(\theta)=20\lg\frac{|F(\theta)|}{\max|F(\theta)|}

2.1.2 嵌套阵列信号模型

与互质阵列类似,二级嵌套阵列也由两个间距不等的均匀阵列穿插组合而成,其中,二级子阵与
一级子阵共用第一个阵元。总阵元数为 N,一级子阵阵元数为 N1,阵元间距为d1;二级指针阵元数为 N2,阵元间距为d2=(N1+1)d1,则一级子阵阵元位置为\{n_1d_1,n_1=0,1,...,N_1-1\}二级子阵阵元位置为\begin{Bmatrix}n_2d_2-d_1,n_2=1,2,...,N_2\end{Bmatrix}所以看上去像第一级嵌套在第二层内部
 

第 k 个信号源的导向矢量可以表示为:

\boldsymbol{a}(\theta_{k})=[1,e^{-j2\pi d_{1}/\lambda\sin\theta_{k}},...,e^{-j2\pi(N_{1}-1)d_{1}/\lambda\sin\theta_{k}},......,e^{-j2\pi(N_{2}d_{2}-d_{1})/\lambda\sin\theta_{k}}]^{T}

阵列流型为:A{=}[a(\theta_1),a(\theta_2),......,a(\theta_K)]

阵列接收数据想X(t)为:x(t)=\sum_{k=1}^Ka(\theta_k)s_k(t)+n(t)=As(t)+n(t)

2.2 传统DOA估计算法

2.2.1 MUSIC算法原理及仿真

波达方向的估计值是否精确,有很多的因素,如信号处理方法的先进程度、信号与算法的匹配程度、外部系统环境,信道和频率的不一致及阵列本身误差等。通常对于波达方向处理的模型,需要作出一些假设,比如:
(1)接收到的信号为平面波信号;
(2)入射信号的带宽比载波频率小很多,也要保证信号源的中心频率是一样的,而且各信号源之间非相关,即为窄带信号;
(3)入射信号个数已知,且要求入射信号个数小于接收阵元数;
(4)天线接收阵元不考虑互耦误差等因素;
(5)各阵元接收噪声为高斯白噪声,且噪声之间以及噪声与信号之间也互相独立

假设有P个远场窄带不相干的信号入射到M个接收阵列上,信号入射角为\theta_p(p=1,2,\cdots,P),那么每个信号从第m个阵元到第一个阵元的相位差可以表示为:\Delta_{mp}=md\sin(\theta_p)

则第m个阵元接收到的第p个信号的时延可以写为:\tau_{mp}=\frac{md\sin\left(\theta_p\right)}c

阵元个数、快拍数、信噪比以及信号入射角度差值,都与测角分辨率成正比,即使谱峰变得更尖锐。但是,增加阵元数和快拍数会使计算量增大,所以在实际的工程应用中,要综合考虑天线阵列布局及信号处理的各方面因素,合理选择阵元个数和快拍数。还可对数据进行预处理,来提高接收数据的信噪比。

阵元间距的改变对 MUSIC 算法估计精度有着很大的影响,当阵元间距为半波长的时候估计效果最好,而当阵元间距小于半波长,谱峰的尖锐程度下降,但也能估计出波达角度,但当谱峰大于半波长,波达角度估计出现了模糊,已不能准确估计波达角度。

使经典 MUSIC 算法对稀疏阵列的波达角度估计完全失效,同时,克服稀疏阵列角度估计的模糊性也是一大难题。

2.3 本章小结

MUSIC 算法精度最高,但由于其需要进行谱峰搜索的特点,导致用时较长;而旋转不变子空间算法由于没有谱峰搜索的步骤,仅是利用分析计算来得到波达角度,所以运行时间较短,但估计精度不如 MUSIC 算法。

3 基于稀疏阵列的波达方向估计

3.1 基于稀疏阵列的传统DOA估计算法

3.1.1 基于互质阵列的传统DOA估计算法

前向平滑MUSIC算法,将阵元数为N的阵列分成多个子阵列,每个子阵列长度为m,且子阵间相互重叠,设入射信号为p个。对于互质线阵,子阵个数为L=N-m+1,那么每个子阵列的输出矢量分别为:X_{i}^{f}=\left[x_{i,}x_{i+1,}....x_{m+i-1}\right]\\x_{i}(t)=\sum_{i=1}^{L}a_{i}(\theta_{i})s_{i}(t)+n_{i}(t)

前向平滑修正的协方差矩阵为:\begin{aligned} \text{R}& =\frac{1}{L}\sum_{i=1}^{L}R_{i}=A(\frac{1}{L}\sum_{i=1}^{L}D^{(i-1)}R_{s}(D^{(i-1)})^{H})A^{H}+\sigma^{2}I \\ &=AR_{s}^{f}A^{H}+\sigma^{2}I \end{aligned}

R_s^f=(\frac1L\sum_{i=1}^LD^{(i-1)}R_s(D^{(i-1)})^H

\boldsymbol{D}=\begin{bmatrix}e^{j\frac{2\pi d}{\lambda}\sin(\theta_1)}&\cdots&0\\0&\ddots&0\\\\0&0&e^{j\frac{2\pi d}{\lambda}\sin(\theta_N)}\end{bmatrix}

后向平滑MUSIC算法与前向平滑MUSIC算法类似,但输出矢量不同,第i个子阵的数据矢量表示为:X_i^b=\begin{bmatrix}x_{M-i+1,}x_{M-i,}......x_{M-m-i+2}\end{bmatrix}

第 L-i+1 子阵的协方差矩阵与前向平滑算法的协方差矩阵阵关系为:X_{l-i+1}^b(t)=J(X_i^f(t)^*)

J 为交换矩阵:\boldsymbol{J}=\begin{bmatrix}0&0&\cdots&1\\0&0&1&0\\\vdots&\ddots&0&\vdots\\1&0&\cdots&0\end{bmatrix}_{m\boldsymbol{\infty}\boldsymbol{n}}

第 L-i+1 个子阵的协方差矩阵为:R_{L-i+1}^b=JA^*D^{-(i-1)}R_s^*(D^{-(i-1)})^H(A^HJ)^*+\sigma^2I

后向平滑 MUSIC 算法的修正平滑协方差矩阵为:R^b=\frac1L\sum_{i=1}^LR_{L-i+1}^b

前后向空间平滑 MUSIC 算法的修正平滑协方差矩阵为:R^{fb}=(R^{b}+R^{f})/2

求得修正平滑协方差矩阵,再利用经典 MUSIC 算法的步骤,就可得出波达方向的估计值。由于经过平滑运算,协方差矩阵的秩恢复到等于信源数,所以适用于相干信号及稀疏矩阵的修正运算。、

3.1.2 基于嵌套阵列的传统DOA估计算法

将嵌套阵列的接收信号表达式进行分组,分别求子矩阵的协方差矩阵,再求和取平均,可得到修正后的平滑协方差,之后进行 MUSIC 算法的步骤可求得波达方向。

未完待续

  • 26
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值