74、用于多集合成员查询的恒定权重分组编码布隆过滤器

用于多集合成员查询的恒定权重分组编码布隆过滤器

1. 引言

多集合成员查询问题旨在确定一个元素是否属于多个不相交集合中的某一个,如果是,还需指出具体属于哪个集合。这一问题在众多网络应用中起着至关重要的作用,例如:
- 二层交换机中的数据包转发
- 路由器中的 IP 查找
- 分布式 Web 缓存
- 深度数据包检测
- 数据包分类
- 网络流量测量

以云计算数据中心为例,二层交换机维护着包含大量目的 MAC 地址及其对应输出端口的 MAC 地址表。当数据包到达时,交换机依据数据包的目的 MAC 地址查找该表以确定转发端口。过去,为了加快数据包转发,交换机常使用哈希表存储 MAC 地址表并进行查询。然而,哈希表因 MAC 地址表条目众多而占用大量内存空间,通常存储在速度较慢的 DRAM 中,而非速度更快的 SRAM 中。此外,在最坏情况下,哈希表的查询性能往往较低。因此,近年来许多工作致力于探索更高效的数据包转发机制,其中布隆过滤器和多集合查询机制被广泛应用以实现大量数据包的快速转发。

2. 相关工作

许多解决多集合成员查询问题的方法都基于布隆过滤器,常见的变体包括 Magic Cube Bloom Filter、Bloomier filter、Shifting bloom filter、Additional bloom filter、Difference Bloom Filter、Buffalo、ID Bloom Filter、Coded Bloom Filter、Combinatorial Bloom Filter、kBF 和 iSet 等。这些变体通常由多个布隆过滤器向量组成,最初标准布隆过滤器仅用

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值