第三卷 第十二章 年龄和性别预测
为了构建一个能够识别照片中人物年龄和性别的系统,我们将使用 Adience 数据集。我们训练两个模型,一个用于年龄识别,另一个用于性别识别。此外,我们还必须依靠更高级的计算机视觉算法,例如面部标志和面部对齐来帮助我们进行预处理 我们在分类之前的图像。
我们将训练 MxAgeGenderNet 的两个独立实例,一个用于识别年龄,另一个用于识别性别。
1、Adience 数据集
Adience数据集包含26580张人脸图像。该数据集中共包含了2284人。然后将数据集分为两个性别类别(男性和女性)以及八个年龄组:0-2、4-6、8-13、15-20、25-32、38-43、48-53和60+。Adience数据集的目标是正确预测照片中特定人物的年龄和性别。
