Python视觉深度学习系列教程 第三卷 第12章 年龄和性别预测

本文介绍了使用Adience数据集训练Python深度学习模型以预测年龄和性别的过程,包括数据集下载、配置文件创建、网络实施、训练与评估,以及预测方法。针对训练过程中遇到的环境问题进行了说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第三卷 第十二章 年龄和性别预测

        为了构建一个能够识别照片中人物年龄和性别的系统,我们将使用 Adience 数据集。我们训练两个模型,一个用于年龄识别,另一个用于性别识别。此外,我们还必须依靠更高级的计算机视觉算法,例如面部标志和面部对齐来帮助我们进行预处理 我们在分类之前的图像。

        我们将训练 MxAgeGenderNet 的两个独立实例,一个用于识别年龄,另一个用于识别性别。

        1、Adience 数据集

        Adience数据集包含26580张人脸图像。该数据集中共包含了2284人。然后将数据集分为两个性别类别(男性和女性)以及八个年龄组:0-2、4-6、8-13、15-20、25-32、38-43、48-53和60+。Adience数据集的目标是正确预测照片中特定人物的年龄和性别。

用于年龄和性别识别的 Adience 数据集样本。 年龄范围从 0-60+
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值