计算机视觉 人脸活体/活性检测方法综述

本文综述了人脸活性检测的重要性和应用,包括生物识别技术中的安全性需求。重点介绍了多种检测方法,如基于频率和纹理分析、可变聚焦、眼球运动、光流、眨眼、组件相关描述符、三维人脸形状、二分类问题分析等。这些方法通过分析人脸的运动、纹理、生命体征等特征,有效区分真实人脸和非真实人脸。尽管各种方法都有其优势和局限性,但活体检测技术在提升生物识别系统安全性方面起着关键作用,是当前研究的热点领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、人脸活性检测概述

        公众对防范欺骗攻击的安全措施有着巨大的需求。生物识别技术是此类安全行业中增长最快的部分。一些常见的识别技术包括面部识别、指纹识别、笔迹验证、手部几何形状、视网膜和虹膜扫描仪。在这些技术中,近年来发展迅速的是人脸识别技术,与其他方法相比,它更直接、更友好、更方便。因此,它已被应用于各种安全系统。

        但人脸识别系统很容易受到非真实人脸的欺骗攻击。比如通过人像照片、视频等等面部信息欺骗人脸识别系统的方法。故而一个安全的系统需要活性检测来防止这种欺骗。

        近年来,活体检测在指纹识别和虹膜识别领域一直是一个非常活跃的研究课题。但在人脸识别中,处理这个问题的方法非常有限。在活体检测的帮助下,生物识别系统的性能将得到提高。这是一个重要且具有挑战性的问题,它决定了生物识别系统安全防范欺骗的可信度。

        在人脸识别中,常用的攻击方法可以分为几类。该分类是基于向人脸验证系统提供的验证证据,如被盗照片、被盗人脸照片、录制的视频、具有眨眼和嘴唇移动能力的3D人脸模型、具有各种表情的3D面部模型等。

二、人脸活性检测方法

1、基于频率和纹理的分析

        Gahyun Kim等人使用了这种方法。其基本目的是从形状和细节上区分活脸和假脸(二维纸口罩)。作者提出了一种基于频率和纹理分析的单图像伪人脸检测方法,用于区分二维纸质口罩中的真实人脸。作者进行了基于功率谱的频率分析方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值