机器学习笔记 - 用于颜值评分的数据集和算法

这篇博客探讨了面部美在计算机视觉中的挑战,特别是通过机器学习和深度学习来评估颜值。文章介绍了SCUT-FBP和SCUT-FBP5500两个数据集,用于面部特征点检测和计算距离比,以此预测面部吸引力。讨论了使用机器学习算法和深度学习模型,如前馈神经网络,进行面部美容评分的潜力,并引用了相关心理学和学术研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

评估面部美是一项具有挑战性的任务,无数哲学家、艺术家和科学家多年来一直在研究这项任务。特别是,它在计算机视觉领域引起了相当大的关注。最近的心理学研究表明,不同的人对美的感知是一致的。另一项研究表明,面部美容是一个可以通过机器学习进行识别的的概念。面部美容的研究可以作为面部美学、整形手术和面部图像修饰的基础,为美图和肖像等面部美容商业系统的发展做出了贡献。

一些心理学中描述决定颜值的一个重要因素是各种面部特征之间的距离之比。面部特征点是指眼角、鼻尖、下巴最低点等特征。我们可以使用很多面部检测模型计算这些比率。

1、SCUT-FBP数据集

SCUT-FBP数据集包含500个具有吸引力评级的不同亚洲女性受试者,所有这些受试者都在评级分布,标准差,一致性和自洽性方面进行了验证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值