CUDA9.2 降级成 CUDA9.0 记录

前言

我发现CUDA版本装9.2真心不是一个好主意,不仅TensorFlow没有官方的CUDA9.2支持(Github上有别人编译好了的,可以找一下如果需要),现在PyTorch更新stable版的1.0了,也暂时只有CUDA 8.0, 9.0, 10.0的支持,除非从源码编译,而且考虑到之后装keras、TFLearn、tensorlayer等怕出问题,就准备把我的CUDA降级成9.0.

卸载CUDA(9.2和重复的9.0)

我看stackoverflow有人写说直接安装就行,旧的版本会自动卸载掉,为了避免麻烦我尝试了一下,结果,新装的9.0版本不仅没有装完(有一个似乎是什么Nsight显示版本比安装的这个新,因为那个是9.2版本时候装的,要我卸载在装这个),结果我一看CUDA竟然并存了两个版本,(虽然网上说两个版本可以并存,什么先装旧版本再装新版本,但这不是我期望的啊!)。一看stackoverflow那个看似简单的方法不行,就开始卸载旧版本。

CUDA_Installation_Guide手册里写了直接在控制面板里卸载就行(这个手册可以在官网某个位置找到),就是下面这么写的CUDA手册中的卸载方法所以我就在控制面板-程序与功能里卸载,排了下序,因为我的电脑里现在有两个版本的CUDA,我就把重复的都卸载了,最后再重新装9.0(因为我不确定重复装了会不会有问题,就全部卸载再单独装一个),基本上就是:

  • 控制面板-程序与功能里在给所有软件排序,
  • 找到NVIDIA开头的软件,留下:NVIDIA的图形驱动程序、NVIDIA Physx系统软件,其余的一律卸载就ok
  • 卸载顺序无所谓,NVIDIA的软件一个个都有其独立卸载程序,但一定要保留上一条那两个
  • 基本情况就像下面这个图(不是我的电脑,图片来自网络,当初卸载没有截图,但都是类似的可以参考)
    控制面板-程序与功能
  • 最后看了一眼C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA里还有9.2的文件夹和9.0的文件夹,因为我都卸载了,都删掉,这个目录应该是空的
  • 我看网上还有说注册表什么的,因为考虑我只是降级,一会儿还要装9.0,并不是完全删除卸载CUDA,就没管。
  • 可以把C:\Program Files\NVIDIA Corporation\Installer2这个文件夹里的内容删除,留下文件夹,避免之后安装9.0版本有问题,具体原因见后文

安装CUDA9.0

  • 因为之前已经装过一遍了,所以这步也比较简单,也不是本文的重点,简单来说就是在官网上下载好对应版本的CUDA双击一路确定/下一步就ok。(注意要是第一次装CUDA是要装VS的,具体版本见官网和别人的教程,之前在装9.2版本的时候已经装过了,此处略去)
  • 之前装过一次,所以环境变量还在,最后环境变量是这些
    CUDA环境变量
  • 其中CUDA_PATHCUDA_PATH_V9_0是CUDA装好了就自动写入PATH的(而且我卸载了CUDA时这两个也消失),因为我之前装过一次,卸载之后除了CUDA_PATHCUDA_PATH_V9_0这两个,其余的还在PATH中就不用再配置了,注意的是,CUDA_SDK_PATH也不会变,原来我安装9.2的时候配置的是...\CUDA Samples\v9.2,这个即使在装好了9.0也不会变,所以手动改一下成...\v9.0,其余的都不用变。
  • 重启电脑,基本ok

验证安装

  • 在cuda安装文件夹中有deviceQuery.exe 和 bandwidthTest.exe两个程序,在CMD/Powershell中打开安装位置这个目录C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\demo_suite,分别输入deviceQuery.exebandwidthTest.exe,运行结果Result=PASS则说明通过,反之,Result=Fail 则需要重新安装。 因为这是事后几天写的图就懒得再试一次再截了。

一些其他的

装完之后我发现电脑C盘少了不少,固态硬盘寸土寸金

<think>嗯,用户需要关于CUDA 9和cuDNN 7的安装配置和兼容性信息。首先,我应该检查提供的引用资料。引用[1]和[2]提到了CUDA 12.1和12.0安装步骤,而引用[3]讨论了版本选择,特别是根据显卡驱动和Python版本来确定CUDA版本。不过用户询问的是较旧的CUDA 9和cuDNN 7,可能需要更早的指导。 首先,我需要确认CUDA 9和cuDNN 7的兼容性。根据引用[3],用户可以通过NVIDIA控制面板查看支持的CUDA版本,但CUDA 9比较老,可能只兼容特定版本显卡驱动。用户需要确保他们的显卡驱动支持CUDA 9,可能需要较旧的驱动程序版本安装步骤方面,CUDA安装流程在引用[1]和[2]中大致相同:下载、安装、环境变量配置。不过CUDA 9可能有一些不同的安装选项或依赖项,需要参考当时的官方文档。cuDNN的安装通常是将文件复制到CUDA目录,然后设置环境变量,如引用[1]和[2]中提到的,但具体路径可能不同。 兼容性方面,引用[3]提到要根据Python版本和深度学习框架版本来选择CUDA和cuDNN。例如,TensorFlow 1.x可能需要CUDA 9和cuDNN 7,而较新的版本需要更高版本。用户可能需要确认他们的框架版本是否支持CUDA 9。 生的问题应该围绕安装步骤、验证方法、兼容性检查、常见问题以及升级可能性。比如如何验证CUDA 9是否正确安装,或者如何解决驱动不兼容的问题。 需要注意的是,由于CUDA 9和cuDNN 7较旧,用户可能遇到依赖项或现代系统不兼容的问题,比如在Ubuntu较新的版本安装可能需要额外的步骤或降级某些库。此外,安全性和支持方面的问题也应该提及,因为旧版本可能不再接收更新。 总结回答结构:先讲兼容性检查,包括驱动版本和框架支持,然后分步安装CUDA和cuDNN,接着验证安装,最后处理常见问题。同时提醒用户考虑升级的可能性。</think>### CUDA 9与cuDNN 7的安装配置与兼容性指南 #### 一、兼容性检查 1. **显卡驱动要求** CUDA 9需要NVIDIA显卡驱动版本≥**384.81**。可通过以下命令查看当前驱动版本: ```bash nvidia-smi ``` 若驱动版本过低,需通过NVIDIA官网或系统包管理器升级[^3]。 2. **开发环境适配** CUDA 9主要适配以下环境: - **TensorFlow 1.5-1.12**、**PyTorch 0.3.1-1.0.1**(需匹配Python 3.5-3.6) - **Ubuntu 16.04/14.04**、**Windows 10/8.1**(部分功能可能受限) 3. **硬件限制** CUDA 9仅支持**Pascal架构(如GTX 10系列)及更早显卡**,Turing架构(如RTX 20/30系列)需更高CUDA版本。 --- #### 二、CUDA 9安装步骤 1. **下载安装包** 从[NVIDIA CUDA存档](https://developer.nvidia.com/cuda-toolkit-archive)选择CUDA 9.09.2版本,根据操作系统下载`runfile`格式(Linux)或`exe`格式(Windows)。 2. **执行安装** **Linux示例**: ```bash sudo sh cuda_9.0.176_384.81_linux.run ``` - 取消勾选显卡驱动安装(若已安装适配版本) - 选择默认安装路径`/usr/local/cuda-9.0` 3. **环境变量配置** 在`~/.bashrc`(Linux)或系统环境变量(Windows)中添加: ```bash export PATH=/usr/local/cuda-9.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH ``` --- #### 三、cuDNN 7安装方法 1. **下载cuDNN** 需注册NVIDIA开发者账号,从[cuDNN存档](https://developer.nvidia.com/rdp/cudnn-archive)下载与CUDA 9匹配的cuDNN 7.x版本2. **文件部署** **Linux示例**: ```bash tar -xzvf cudnn-9.0-linux-x64-v7.6.5.32.tgz sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/ sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn* ``` --- #### 四、验证安装 1. **CUDA验证** ```bash nvcc --version # 应显示CUDA 9.x ``` 2. **cuDNN验证** 编译运行NVIDIA提供的[cuDNN样例代码](https://github.com/NVIDIA/cudnn_samples_v7),检查输出是否包含`Test passed!`。 --- #### 五、常见问题 1. **驱动版本冲突** 若出现`Failed to initialize NVML: Driver/library version mismatch`,需重启系统或完全卸载旧驱动后重装。 2. **TensorFlow兼容性报错** 若提示`Could not load dynamic library &#39;libcudart.so.9.0&#39;`,检查环境变量是否指向CUDA 9路径,或通过以下命令修复: ```bash sudo ldconfig /usr/local/cuda-9.0/lib64 ``` ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值