深度学习
Batac_
中国北方小镇的田园村落
展开
-
试玩CoreML
第一步当然是看文档:https://developer.apple.com/machine-learning/models/包含了图像分类, 图像分割, 对象检测等模型, 每一个案例都有代码实例与训练好的模型, 可以根据demo直接调试;使用YOLOv3在真机上进行对象检测, 效果如图:因为种类不够多, 只能检测出一定的物体, 但此时已经很大了, 显然, 移动端的app是太大了, 如果网速更得上, 放在服务端的效果也许会更好(5G用在个人太浪费...)代码下载:https://de.原创 2020-10-19 17:21:14 · 143 阅读 · 0 评论 -
centos7 卸载和重新安装yum
rpm -qa | grep yum | xargs rpm -e --nodeps第二步:去镜像网站下载以下包,下载完成后传到linux服务器http://mirrors.163.com/centos/7/os/x86_64/Packages/手动下载包如下(包的版本会升级,实际下载时自行对应下载)rpm-4.11.3-40.el7.x86_64.rpmpython-urlgrabber-3.10-9.el7.noarch.rpmyum-plugin-fastestmirror-1.1.31.原创 2020-10-17 11:12:12 · 1659 阅读 · 0 评论 -
数字图像
一幅图像可以用一个二维函数f(x, y)表示, x与y表示在平面空间坐标中的值, f表示在空间坐标中的图像的灰度或者强度值, 如果x, y, f是有限的并且是离散数值, 则该图像为数字图像;原创 2020-10-16 14:50:21 · 107 阅读 · 0 评论 -
线性回归(MXNet gluon)
from mxnet import ndarray as ndfrom mxnet import autogradfrom mxnet import gluon# 1. 处理数据num_inputs = 2num_examples = 1000true_w = [2, -3.4]true_b = 4.2x = nd.random_normal(shape=(num_examples, num_inputs))y = true_w[0]*x[:, 0]+true_w[1]*x[:, .原创 2021-02-03 14:12:44 · 193 阅读 · 0 评论 -
卷积神经网络(多分类问题 pytorch)
# 手写数字识别 神经网络处理 高级处理import torchimport torch.nn as nn# 数据集处理from torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoader# 函数 激活函数等import torch.nn.functional as F# 优化器包import torch.optim as optim# .原创 2021-02-02 14:45:49 · 889 阅读 · 1 评论 -
多分类问题(卷积神经网络 pytorch)
# 手写数字识别 神经网络处理import torch# 数据集处理from torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoader# 函数 激活函数等import torch.nn.functional as F# 优化器包import torch.optim as optim# 分批batch_size = 64# 1. 数据处理.原创 2021-02-02 13:37:36 · 647 阅读 · 0 评论 -
多分类问题(手写数字 pytorch)
# 手写数字识别import torch# 数据集处理from torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoader# 函数 激活函数等import torch.nn.functional as F# 优化器包import torch.optim as optim# 分批batch_size = 64# 1. 数据处理transfo.原创 2021-02-02 10:50:35 · 341 阅读 · 0 评论 -
糖尿病预测(使用数据加载器 pytorch)
import torchfrom torch.utils.data import Datasetfrom torch.utils.data import DataLoaderimport numpy as np# 1. 数据处理class DiabetesDataset(Dataset): def __init__(self, file_path): xy = np.loadtxt(file_path, delimiter=',', dtype=np.float32).原创 2021-02-01 17:36:53 · 635 阅读 · 1 评论 -
糖尿病的预测(pytorch)
import numpy as npimport torch# 糖尿病预测研判# 1. 处理数据xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)x_data = torch.from_numpy(xy[:, :-1])y_data = torch.from_numpy(xy[:, [-1]])# 2. 建立模型# 2. 设计模型 继承自torch.nn.Moduleclass Model(torch.原创 2021-02-01 17:02:16 · 1659 阅读 · 0 评论 -
逻辑回归(pytorch)
import torchvisionimport torchimport torch.nn.functional as F# 1. 准备数据集x_data = torch.Tensor([[1.0], [2.0], [3.0]])y_data = torch.Tensor([[0], [0], [1]])# 2. 设计模型 继承自torch.nn.Moduleclass LinearModel(torch.nn.Module): def __init__(self): .原创 2021-02-01 15:59:37 · 153 阅读 · 0 评论 -
线性回归(pytorch)
import torch# 1. 准备数据集x_data = torch.Tensor([[1.0], [2.0], [3.0]])y_data = torch.Tensor([[2.0], [4.0], [6.0]])# 2. 设计模型 继承自torch.nn.Moduleclass LinearModel(torch.nn.Module): def __init__(self): super(LinearModel, self).__init__() .原创 2021-02-01 15:13:44 · 197 阅读 · 0 评论 -
梯度下降算法 - 反向传播(Pytorch)
import torch#数据集x_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]#创建张量w = torch.Tensor([1.0])#需要计算梯度w.requires_grad = Truedef forward(x): '''计算输出值''' return x * wdef loss(x, y): '''计算损失值''' y_pred = forward(x) return (y_pred.原创 2021-02-01 11:46:17 · 253 阅读 · 1 评论 -
梯度下降算法(python)
# 梯度下降算法x_data = [1.0, 2.0, 3.0]y_data = [1.5, 3.0, 4.5]#参数w = 1.0# 学习率lr = 0.01def forward(x): '''预测值''' return x*wdef cost(xs, ys): '''计算损失和''' cost = 0 for x, y in zip(xs, ys): y_pred = forward(x) cost +..原创 2021-02-01 10:37:52 · 287 阅读 · 0 评论 -
简单的神经网络实现手写数字图片识别
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataprint("++++++++++++++++神经学习+++++++++++++++++")FLAGS = tf.app.flags.FLAGStf.app.flags.DEFINE_integer("is_train", 0...原创 2019-12-12 17:03:06 · 698 阅读 · 0 评论