# 手写数字识别 神经网络处理 高级处理
import torch
import torch.nn as nn
# 数据集处理
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 函数 激活函数等
import torch.nn.functional as F
# 优化器包
import torch.optim as optim
# 分批
batch_size = 64
# 1. 数据处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
train=True,
download=True,
transform=transform)
test_dataset = datasets.MNIST(root='../dataset/mnist/',
train=False,
download=True,
transform=transform)
train_loader = DataLoader(test_dataset,
shuffle=True,
batch_size=batch_size)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
# 数据为1 * 28 * 28
# 2. 建立模型
class InceptionA(nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
'''初始化'''
"""初始化"""
# 池化分支
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
# 1 * 1 分支
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
# 5 * 5 分支
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
# 3 * 3分支
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
def forward(self, x):
branch_pool = F.avg_pool2d(x,
kernel_size=3,
stride=1,
padding=1)
branch_pool = self.branch_pool(branch_pool)
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
# dim 1纬度
return torch.cat(outputs, dim=1)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
model = Net()
# 3.损失函数和优化器 交叉熵损失
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 4.循环训练
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 0:
print('[%d,%d] loss: %.10f' % (epoch+1, batch_idx+1, running_loss / 300))
running_loss = 0.0
# 测试验证
def test():
correct = 0
total = 0
with torch.no_grad(): # 不会再进行梯度
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total+=labels.size(0)
correct+=(predicted==labels).sum().item()
print("Accuracy on test set: %d %%" % (100 * correct / total))
# 程序入口处
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
print("训练结束...")