自主移动机器人的定位与建图技术解析
1. 基于猜测位姿的定位方法
在定位过程中,我们可以先假设机器人的位姿,利用已知的校准矩阵,将图像中所有物体的角点投影到图像平面上。然后,测量观测到的角点与投影角点之间的误差。若假设的位姿合理,投影角点应与观测角点在一定误差范围内重合。此时,可借助优化库调整猜测的位姿,使误差最小化,这便是定位问题的求解思路。
不过,这种方法存在一定局限性。例如,在实际场景中,机器人有效定位往往需要大量特征,而该示例中的特征数量较少。此外,靠近相机的物体角点位置的微小误差,会导致物体在图像上的投影位置发生较大变化,优化库对这类物体较为敏感。比如,将字母“D”移动一米,其在图像上的投影位置会有显著改变;而将远处的门移动一米,图像上几乎看不出变化。因此,附近物体的位置必须高精度注册。
2. 基于激光雷达的定位技术
2.1 激光雷达基本原理
激光雷达分为 2D 和 3D 两种类型。2D 激光雷达产生 2D 图像,测量障碍物相对于机器人航向在各个角度(方位角)的距离(范围);3D 激光雷达产生 3D 图像,测量障碍物相对于机器人航向在各个立体角(方位角和仰角)的距离。
假设地图信息完全已知,即所有地标(特征)的位置在 2D 或 3D 空间中是确定的。当激光雷达检测到地标时,需要解决对应问题,即从数据库中找出与检测到的地标特征描述符最接近的地标。同时,如果已知机器人的预期位姿,地标在激光雷达图像中的投影应与实际观测到的处于同一空间区域。
2.2 2D 激光雷达定位计算
考虑一个安装在平面机器人中心的 2D 激光雷达。假设观测到地标 $l_i$ 的距离为 $d_{