pytorch+tensorflow+sklearn安装教程(conda版)

conda环境创建

conda create -n env_name python=x.x
  • conda虚拟环境命令
conda -V  #查看conda版本
conda info -e  #查看conda虚拟环境
conda activate en_name  #进入conda虚拟环境
conda list  #查看安装了哪些包
conda install pkg_name  #安装包
conda uninstall pkg_name  #删除包
pip install pkg_name  #安装包
pip uninstall pkg_name  #删除包
conda deactivate  #退出虚拟环境
conda remove -n env_name --all  #删除虚拟环境
conda update conda  #检查更新conda

安装requirements

pip freeze > requirements.txt #导出环境到txt文件
pip install -r requirements.txt

pytorch安装

  • 查看cuda版本
nvidia-smi
  • pytorch安装:pytorch官网
    注意:选择cuda版本应小于等于上面的cuda版本在这里插入图片描述
    获取安装命令,如下:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch

(安装较慢,可添加镜像)

pytorch-geometric安装

进入官网:https://pytorch-geometric.com/whl/index.html

  • 选择上面安装的pytorch版本和cuda版本,依次安装四个依赖包(复制链接安装,和python版本和操作系统对应)

  • 安装pytorch-geometric

pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_cluster-1.6.0-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_scatter-2.0.9-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_sparse-0.6.14-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_spline_conv-1.2.1-cp39-cp39-win_amd64.whl
pip install pytorch-geometric

或直接官网:https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

conda install pyg -c pyg
conda install pytorch-sparse -c pyg

验证

python
import torch
torch.cuda.is_available()

都没有出错,则安装成功

tensorflow安装

  • 新建一个conda环境
  • 直接conda命令安装keras即可,可同时安装tensorflow
conda install keras==x.x.x

sklearn库安装

pip install scikit-learn

DGL_cuda创建

  • DGL官网 根据cuda版本选择对应的命令
  • 指定DGL版本
    – 若已经安装了不需要的DGL版本,则要删除现有版本:
    conda uninstall -c dglteam dgl-cuda10.2 (cuda10.2可根据自己的环境调整)
    指定删除版本:conda uninstall -c dglteam dgl-cuda10.2==0.5.0
    (cuda10.2==0.5.0可根据自己的环境调整,使用 conda list 可以查看使用的当前版本)
  • 若尚未安装DGL:直接指定版本即可:conda install -c dglteam dgl-cuda10.2==0.4.3post2
### 回答1: 安装Anaconda: 1. 首先,从Anaconda官网下载适合您操作系统的安装包:https://www.anaconda.com/products/distribution 2. 安装包下载完成后,双击运行安装包,按照提示进行安装。 3. 安装完成后,打开Anaconda Navigator。 安装scikit-learn: 1. 在Anaconda Navigator中,选择Environments。 2. 在Environments中,选择您想要安装scikit-learn的环境。 3. 在该环境中,选择Not Installed,然后在搜索框中输入scikit-learn。 4. 选择scikit-learn,然后点击Apply按钮进行安装。 5. 安装完成后,您可以在该环境中使用scikit-learn了。 希望这个教程能够帮助您安装Anaconda和scikit-learn。 ### 回答2: anaconda是一个非常好用的数据分析平台,它内置了很多常用的python工具和库,让我们能够更加方便地进行数据分析和开发。要使用anaconda中的sklearn库,我们需要进行以下安装步骤: 第一步:安装anaconda 首先,我们需要从官网下载并安装anaconda。在下载页面选择对应系统的本进行下载。安装过程中按照提示进行配置即可。 第二步:打开anaconda prompt 安装完成之后,我们需要打开anaconda prompt来进行后续操作。anaconda prompt相当于是一个命令行界面,我们可以在这里进行conda库的安装、升级和管理等操作。 第三步:查看已有的库列表 为了避免在安装sklearn时出现本兼容性问题,我们需要先查看一下当前已经安装的库列表。我们可以输入以下命令来查看: conda list 此时会输出当前所有已经安装的库名称和本号等信息。 第四步:安装sklearn库 接下来,我们就可以对sklearn库进行安装了。我们可以在anaconda prompt中输入以下命令进行安装conda install scikit-learn 这个过程可能需要一些时间,会根据当前网络速度和库的大小而有所不同。在安装过程中如果需要输入“y/n”确认则输入“y”进行确认即可。 安装成功后可使用以下语句导入库,以确保安装成功: import sklearn 这样,我们就可以开始在anaconda中愉快地使用sklearn库进行数据分析和机器学习等操作了。 ### 回答3: Anaconda是一个用于数据科学和机器学习的开源软件包管理系统。其强大之处在于预装了大量的科学计算、数据分析和机器学习工具。 其中之一是scikit-learn(简称sklearn),它是一个Python开源项目,提供了简单又有效的数据挖掘和数据分析工具,是Python数据分析及数据挖掘领域中很重要的第三方库之一。 Anacondasklearn安装教程如下: 1.首先去Anaconda官网https://www.anaconda.com/products/individual下载适合自己电脑的本,根据不同系统选择相应的软件包(Python本最好为3.5或更高本)进行下载安装。 ![image](https://img-blog.csdn.net/20180309141958311?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hpbmZyYXNqdW5pbmc1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 2.下载安装完成后,可以打开Anaconda Navigator查看自己是否下载成功。然后在主界面的Environments中,点击右边的Create按钮创建虚拟环境,选择自己需要的虚拟环境名称后,点击Create就可以了。 ![image](https://img-blog.csdn.net/20180323080912968?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hpbmZyYXNqdW5pbmc1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 3.然后可以在分别点击左上方的Channels和右上方的All,寻找自己需要的库并进行安装。对于sklearn库来说,安装十分简单,只需在All中搜索sklearn后,就会列出sklearn本及其他可选项,选择自己要安装本即可。如下图所示: ![image](https://img-blog.csdn.net/20180323081739350?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hpbmZyYXNqdW5pbmc1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 4.等到安装完成后,就可以在Anaconda的Jupyter Notebook等中测试sklearn是否安装成功了。此时在Jupyter Notebook中输入import sklearn,若没有提示任何错误信息,那么就说明sklearn安装成功了。 以上是Anacondasklearn安装过程,相信小伙伴们在安装过程中都能够一步一步完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值