pytorch+tensorflow+sklearn安装教程(conda版)

conda环境创建

conda create -n env_name python=x.x
  • conda虚拟环境命令
conda -V  #查看conda版本
conda info -e  #查看conda虚拟环境
conda activate en_name  #进入conda虚拟环境
conda list  #查看安装了哪些包
conda install pkg_name  #安装包
conda uninstall pkg_name  #删除包
pip install pkg_name  #安装包
pip uninstall pkg_name  #删除包
conda deactivate  #退出虚拟环境
conda remove -n env_name --all  #删除虚拟环境
conda update conda  #检查更新conda

安装requirements

pip freeze > requirements.txt #导出环境到txt文件
pip install -r requirements.txt

pytorch安装

  • 查看cuda版本
nvidia-smi
  • pytorch安装:pytorch官网
    注意:选择cuda版本应小于等于上面的cuda版本在这里插入图片描述
    获取安装命令,如下:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch

(安装较慢,可添加镜像)

pytorch-geometric安装

进入官网:https://pytorch-geometric.com/whl/index.html

  • 选择上面安装的pytorch版本和cuda版本,依次安装四个依赖包(复制链接安装,和python版本和操作系统对应)

  • 安装pytorch-geometric

pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_cluster-1.6.0-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_scatter-2.0.9-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_sparse-0.6.14-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_spline_conv-1.2.1-cp39-cp39-win_amd64.whl
pip install pytorch-geometric

或直接官网:https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

conda install pyg -c pyg
conda install pytorch-sparse -c pyg

验证

python
import torch
torch.cuda.is_available()

都没有出错,则安装成功

tensorflow安装

  • 新建一个conda环境
  • 直接conda命令安装keras即可,可同时安装tensorflow
conda install keras==x.x.x

sklearn库安装

pip install scikit-learn

DGL_cuda创建

  • DGL官网 根据cuda版本选择对应的命令
  • 指定DGL版本
    – 若已经安装了不需要的DGL版本,则要删除现有版本:
    conda uninstall -c dglteam dgl-cuda10.2 (cuda10.2可根据自己的环境调整)
    指定删除版本:conda uninstall -c dglteam dgl-cuda10.2==0.5.0
    (cuda10.2==0.5.0可根据自己的环境调整,使用 conda list 可以查看使用的当前版本)
  • 若尚未安装DGL:直接指定版本即可:conda install -c dglteam dgl-cuda10.2==0.4.3post2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值