pytorch+tensorflow+sklearn+DGL安装教程(conda版)
conda环境创建
- anaconda安装:https://www.anaconda.com/
- anaconda安装成功测试:
- 创建conda虚拟环境
conda create -n env_name python=x.x
- conda虚拟环境命令
conda -V #查看conda版本
conda info -e #查看conda虚拟环境
conda activate en_name #进入conda虚拟环境
conda list #查看安装了哪些包
conda install pkg_name #安装包
conda uninstall pkg_name #删除包
pip install pkg_name #安装包
pip uninstall pkg_name #删除包
conda deactivate #退出虚拟环境
conda remove -n env_name --all #删除虚拟环境
conda update conda #检查更新conda
安装requirements
pip freeze > requirements.txt #导出环境到txt文件
pip install -r requirements.txt
pytorch安装
- 查看cuda版本
nvidia-smi
- pytorch安装:pytorch官网
注意:选择cuda版本应小于等于上面的cuda版本
获取安装命令,如下:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
(安装较慢,可添加镜像)
pytorch-geometric安装
进入官网:https://pytorch-geometric.com/whl/index.html
-
选择上面安装的pytorch版本和cuda版本,依次安装四个依赖包(复制链接安装,和python版本和操作系统对应)
-
安装pytorch-geometric
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_cluster-1.6.0-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_scatter-2.0.9-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_sparse-0.6.14-cp39-cp39-win_amd64.whl
pip install https://data.pyg.org/whl/torch-1.11.0%2Bcu115/torch_spline_conv-1.2.1-cp39-cp39-win_amd64.whl
pip install pytorch-geometric
或直接官网:https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
conda install pyg -c pyg
conda install pytorch-sparse -c pyg
验证
python
import torch
torch.cuda.is_available()
都没有出错,则安装成功
tensorflow安装
- 新建一个conda环境
- 直接conda命令安装keras即可,可同时安装tensorflow
conda install keras==x.x.x
sklearn库安装
pip install scikit-learn
DGL_cuda创建
- DGL官网 根据cuda版本选择对应的命令
- 指定DGL版本
– 若已经安装了不需要的DGL版本,则要删除现有版本:
conda uninstall -c dglteam dgl-cuda10.2
(cuda10.2可根据自己的环境调整)
指定删除版本:conda uninstall -c dglteam dgl-cuda10.2==0.5.0
(cuda10.2==0.5.0可根据自己的环境调整,使用 conda list 可以查看使用的当前版本) - 若尚未安装DGL:直接指定版本即可:
conda install -c dglteam dgl-cuda10.2==0.4.3post2