从零开始搭建Ubuntu下的深度学习环境TensorFlow+Keras+Pytorch+Sklearn+OpenCV

我的Ubuntu系统又双叒叕崩溃了,卡在系统登录输密码的界面循环,似乎是更新了一下系统,和英伟达的驱动不兼容了。正好我的CUDA版本是8.0,支持不了高版本的TensorFlow,很难受,索性格式化系统,重新来一遍好了。现将整个过程记录在此,以备后查。


2020.9.15补充
查看显卡硬件型号
ubuntu-drivers devices
如果同意安装推荐版本,那我们只需要终端输入:sudo ubuntu-drivers autoinstall 就可以自动安装了。
当然我们也可以使用 apt 命令安装自己想要安装的版本,比如我想安装 340 这个版本号的版本,终端输入:sudo apt install nvidia-340 就自动安装了。
安装完记得重启电脑


2019.4.8补充
删除CUDA的程序在 /usr/local/cuda-10.0/bin
下载NVIDIA驱动的时候,网站经常打不开,翻墙就能解决
测试Tensorflow 1.X 是否支持GPU的测试代码

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))


正文开始

从零开始搭建Ubuntu下的深度学习环境

一、删除Ubuntu系统

需要安装:分区助手 https://www.disktool.cn/download.html
easyBCD http://www.xiazaiba.com/html/6227.html
在分区助手中找到原来Ubuntu系统安装的位置,选择"删除分区",得到约100GB的空闲空间。
在这里插入图片描述
在easyBCD中删除原来的加载选项
在这里插入图片描述

二、下载Ubuntu系统,制作系统盘

Ubuntu系统下载网址
下载ubuntu-16.04.4-desktop-amd64.iso
在这里插入图片描述
然后在 https://pan.baidu.com/s/1gbCc1FRxMRFczoRPjD4Cqg 提取码:poag
下载rufus,我们用它来制作系统盘。
在这里插入图片描述
准备一个8G的U盘,格式化,按照上图操作,点击START,稍等片刻,U盘启动盘就做好了。

三、安装系统

首先修改BIOS,选择为U盘启动优先。每台电脑的情况不一样,就不多说了,我的笔记本好像是开机按住F12还是Delete。
进入系统之后,选择试用系统,桌面上有安装系统的图标,大致如下图
在这里插入图片描述
选择中文->为图形或无线硬件… ->其他选项
找到我们在第一步得到的空余空间,点击“+”创建四个主要分区:
在这里插入图片描述

  • 10G 主分区 空间起始位置 Ext4日志文件系统 /
  • 2048MB 逻辑分区 空间起始位置 交换空间
  • 500MB 逻辑分区 空间起始位置 Ext4日志文件系统 /boot
  • 剩余的空间 逻辑分区 空间起始位置 Ext4日志文件系统 /home

注意 boot分区要做大一点,我第一次试了200MB,结果在安装到最后报错了。
"安装启动引导器的设备"选择\boot分区。
注意如果分配完主分区之后,空闲空间变成了不可用,就点击还原,将主分区改成逻辑分区

往下执行都没什么难度了,安装成功之后,拔出U盘,重启系统,进入Ubuntu则表示成

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值