苹果二叉树(题解)

这是一篇关于苹果二叉树问题的解决方案。题目描述一棵每个节点至少有两个子节点的二叉树,需要通过剪枝减少树枝数量,同时保留最多的苹果。输入包含树的节点数和需要保留的树枝数,输出是最大可保留的苹果数。解决方案中,使用动态规划`f[i][j]`表示到达第i个节点保留j条枝条的最大苹果数,并通过状态转移方程进行计算,避免重复或遗漏节点。
摘要由CSDN通过智能技术生成

题目描述


有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)。这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树:

2 5

\ /

3 4

\ /

1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。 给定需要保留的树枝数量,求出最多能留住多少苹果。

输入格式


第1行2个数,N和Q(1<=Q<= N,1

输出格式


一个数,最多能留住的苹果的数量。

样例数据


input
5 2
1 3 1
1 4 10
2 3 20
3 5 20

output
21

Solution


f[i][j] f [ i ] [ j ] 表示到第i个节点保留j条枝条的最大苹果数量

因为是二叉树,所以我们枚举左孩子中保留的枝条数量,可以通过相减得到右孩子的枝条个数

状态转移方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值