选课(+输出方案)(题解)

本文介绍了如何解决一个选课问题,旨在最大化学分。问题描述为根据课程间的先修关系和选课限制,找到能获得最高学分的选课方案。解决方案包括将问题转化为树形动态规划,先尝试多组背包模型,然后转换为二叉树结构进行优化,以减少状态转移的关系,提高代码简洁性。提供了两种不同的解题思路和对应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述


学校实行学分制。每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。学校开设了N(N < 300)门的选修课程,每个学生可选课程的数量M是给定的。学生选修了这M门课并考核通过就能获得相应的学分。

  在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其它的一些课程的基础上才能选修。例如《Frontpage》必须在选修了《Windows操作基础》之后才能选修。我们称《Windows操作基础》是《Frontpage》的先修课。每门课的直接先修课最多只有一门。两门课也可能存在相同的先修课。每门课都有一个课号,依次为1,2,3,…。 例如:
  这里写图片描述

上例中1是2的先修课,即如果要选修2,则1必定已被选过。同样,如果要选修3,那么1和2都一定已被选修过。   你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修课优先的原则。假定课程之间不存在时间上的冲突。

输入格式


输入文件的第一行包括两个整数N、M(中间用一个空格隔开),其中1≤N≤300,1≤M≤N。

以下N行每行代表一门课。课号依次为1,2,…,N。每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。学分是不超过10的正整数。

输出格式


只有一个数:实际所选课程的学分总数。

样例


input
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2

output
13

Solution


很明显的树形结构无疑了,确认过眼神,是树形DP的人。

刚开始想的思路是转化成一个多组背包的模型,首先设一个超级根。

设f[x][t]表示以x为根的子树中选t门课能够获得的最高学分,设x的子节点集合为 son(x) s o n ( x ) ,子节点个数 p

### 蓝桥杯 C++ 竞赛题解 #### 题目A解析 对于给定的计算逻辑,程序通过迭代找到满足特定条件的第一个整数`i`以及对应的`y`值并输出其和。具体实现如下: ```cpp #include <iostream> #include <cmath> int main() { int a = 2019 * 2019; for (int i = 2020;; ++i) { int x = 2 * i * i - a; int y = sqrt(x); if (y * y == x && i < y) { std::cout << i + y << std::endl; break; } } return 0; } ``` 此段代码旨在求解一个数学表达式的最小正整数解[^1]。 #### 关于训练平台的选择 针对蓝桥杯准备而言,不建议仅依赖LeetCode作为主要练习资源。尽管LeetCode提供了大量高质量编程挑战,但这些题目更侧重于求职面试场景下的算法考察,而非竞赛环境中的全面能力测试。相比之下,更适合参与者的备选方包括其他专注于信息学奥林匹克或ACM风格的比赛网站及教材资料[^2]。 #### 实际比赛策略分享 当面对实际比赛中遇到的问题时,有时采用简单直接的方法反而能有效解决问题而不必担心性能瓶颈。例如,在处理某类问题时可以通过简单的线性扫描完成任务而无需构建复杂的多层循环结构来优化效率。下面是一个具体的例子展示了如何利用这一思路快速得出结果: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; for (int i = 0; i < n; ++i) { cout << max(i * 2, (n - i - 1) * 2) << endl; } return 0; } ``` 这段代码实现了对一系列数值的最大化操作,并且由于采用了非嵌套的一维遍历方式,确保了即使在较大规模的数据集下也能保持良好的执行速度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值