【扩展欧几里得 && 容斥 && 容斥对象转移成因数】HDU - 5514 Frogs

Step1 Problem:

m 个石柱围成一个圈,有 n 只青蛙从 0 开始跳,第 i 只青蛙当前位置是 pos 下一次能跳到 pos+a[i] 的石柱上,问所有柱子被踩到一次的序列和。
数据范围:
1<=n<=1e4, 1<=m<=1e9, 1<=a[i]<=1e9.

Step2 Ideas:

前置技能
(a*t)%k = y, t 为非负整数,求 y.
a*t = k*t1 + y; a*t - k*t1 = y, a*t - k*t1 = gcd(a, k)
y = gcd(a, k) 的倍数
有了上述前置技能:
我们知道每只青蛙可能跳那些柱子,2^n 直接容斥,显然会 TLE,因为都会和 m 求 gcd,所以有很多重复计算了。
由于 gcd(a[i], m) 是 m 的因数,我们可以对因数进行容斥
2^因数个数 显然还是会 TLE,所以我们得优雅的容斥
假设 x = gcd(a[i], m), y = gcd(a[i+1], m), z = gcd(a[i+2], m) 同时 x, y, z 不相等。
如果 y 是 x 的倍数,x 的倍数的柱子都走过后,y 就不需要走了。
如果 gcd(x, y) = 1, z 是 x 的倍数 同时 也是 y 的倍数,x 和 y 走完,多走了 z 的倍数,所以还需要减去 z 的倍数。
这样我们就可以从小到大枚举因数,对当前因数的倍数进
行减操作,就可以 O(因数个数^2) 的优雅容斥了

Step3 Code:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int fact[200], vis[200], ed[200];
int main()
{
    int T, n, m, num;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; Case++)
    {
        scanf("%d %d", &n, &m);
        int cnt = 0;
        for(int i = 1; i*i <= m; i++)
        {
            if(m%i == 0) {
                fact[cnt++] = i;
                if(i*i != m) {
                    fact[cnt++] = m/i;
                }
            }
        }
        sort(fact, fact+cnt);
        memset(ed, 0, sizeof(ed));
        memset(vis, 0, sizeof(vis));
        for(int i = 0; i < n; i++)
        {
            scanf("%d", &num);
            int a = __gcd(num, m);
            for(int j = 0; j < cnt; j++)
            {
                if(fact[j]%a == 0) {
                    vis[j] = 1;
                }
            }
        }
        cnt--;
        ll ans = 0;
        for(int i = 0; i < cnt; i++)
        {
            if(vis[i] != ed[i]) {
                int t = (m-1)/fact[i];
                //ans += (ll)(fact[i]+(t*fact[i]))/2 * t * (vis[i]-ed[i]);
                ans += (ll)t*(1+t)/2 * fact[i] * (vis[i]-ed[i]);
                for(int j = i+1; j < cnt; j++)
                {
                    if(fact[j]%fact[i] == 0) {
                        ed[j] += (vis[i]-ed[i]);
                    }
                }
            }
        }
        printf("Case #%d: %lld\n", Case, ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您解答算法导论第15章的双调欧几里得旅行商问题和整齐打印问题。 1. 双调欧几里得旅行商问题 双调欧几里得旅行商问题是指在平面上给定一些点,求一条简单闭合曲线,使得经过每个点恰好一次,且总路程最小。其中,欧几里得距离是指两点之间的距离。 该问题可以通过分治算法进行求解,具体步骤如下: 1)将所有的点按照x坐标从小到大排序; 2)将所有的点分两部分,分别求出每一部分的最小路径,分别记为d1和d2; 3)在两部分的点中,选择一个点p,使得p在上一部分的最后一个点,同时p在下一部分的第一个点; 4)以p为分界点,将所有点分上下两部分,并分别按照y坐标从小到大排序; 5)分别计算上半部分和下半部分的最小路径,分别记为d3和d4; 6)最终结果为d1+d2+d3+d4。 2. 整齐打印 整齐打印问题是指将一段文本分若干行,每行不超过给定的宽度,使得每一行的长度尽可能相等,同时在每行末尾添加空格,使得每行的末尾恰好是一个单词的末尾,且每行的空格数最小。 该问题可以通过动态规划算法进行求解,具体步骤如下: 1)定义一个cost数组,其中cost[i][j]表示将第i个单词到第j个单词放在一行的代价; 2)定义一个lc数组,其中lc[i][j]表示将第i个单词到第j个单词放在一行的空格数; 3)计算cost和lc数组,具体方法如下: - 对于任意的i<=j,将第i到第j个单词放在一行,计算该行的空格数; - 如果该行的长度超过给定的宽度,则该方案不可行,否则将该方案的代价和空格数存入cost和lc数组中。 4)定义一个dp数组,其中dp[i]表示将前i个单词分若干行的最小代价; 5)动态规划求解dp数组,具体方法如下: - 对于任意的1<=i<=n,将前i个单词分若干行,计算最小代价; - 设最后一行的单词范围为[j+1, i],则dp[i] = min(dp[j] + cost[j+1][i]),其中j的范围为0<=j<i。 6)最终结果为dp[n]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值