欧几里得 & 拓展欧几里得算法 讲解 (Euclid & Extend- Euclid Algorithm)

欧几里得& 拓展欧几里得(Euclid & Extend-Euclid)

欧几里得算法(Euclid)

背景

欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。                                                                                                                                               ——百度百科

代码:

递推的代码是相当的简洁:

int gcd(int a,int b) { return b == 0 ? a : gcd(b, a % b); }


分析:

方法说了是辗转相除法,自然没有什么好介绍的了。。

Fresh肯定会觉得这样递归下去会不会爆栈?实际上在这里是不会爆栈的,因为递归的层数是非常小的,不信你可以随便拿一些大数测试一下,lrj的白书和紫书上讲到gcd函数的递归层数不超过40785lgN + 1.6723,其中N=max{a,b}。让gcd函数递归层数最多的是gcd(F(n),F(n-1)),F(n)是Fibonacci数!!至于为什么博主没有证明,有想法的小伙伴麻烦在评论在说下下,(*^__^*) 嘻嘻……

拓展欧几里得(Extend- Euclid)

背景:

扩展欧几里德算法是用来在已知a, b求解一组x,y [x,y都是整数],使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。                                                                                                                                                                                                                      ——百度百科

用到的几个欧几里得重要结论:

1)            gcd(a,b) =  gcd(b,a %b);

2)            gcd(a,0) =  a.

代码:

typedef __int64 ll;
void exgcd(ll a, ll b, ll& d, ll& x, ll &y)
{
    if(!b)
    {
        d = a, x = 1, y = 0;
    }
    else
    {
        exgcd(b, a % b, d, y, x);
        y -= x * (a / b);
    }
}


分析:

设如下两个方程:

ax+by  =  gcd(a,b)  =  d;

bx’+(a%b)y’  =  gcd(b,a%b);

那么由重要结论(1)有gcd(a,b)  =  gcd(b,a %b),

那么ax+by  =  bx’+(a%b)y’  =  bx’ +(a – [a/b]*b)y’  =  ay’ + b(x’ – [a/b]y’),

恒等关系有 x = y’ , y = (x’ – [a/b]y’),[a/b]表示a/b的值向下取整。

........

那么现在就可以用exgcd(a,b,d,x,y)表示方程ax+by = d,那么由上面一直递归下去,直到 b = 0,递归结束,此时  d = gcd(a,0) =a , x = 1,y =0;【因为 ax+0*y = gcd(a,0)嘛~】

拓展欧几里得的几个应用

求解不定方程

例如:求解不定整数方程ax+by = c

求ax+by = c, 令d =gcd(a,b);

那么(a / d ) * x + (b / d )* y = c / d

因为(a / d )、(b / d ) 、x、y都是整数,那么保证原不定整数方程ax+by = c有解的充要条件就是c / d为整数,即cgcd(a,b)的倍数。

如果有解,那么令 K = c/d;

那么,对方程aX+bY = d;假设有拓展欧几里得求出一组解为(X0,Y0),那么aX0+bY0 = d;等式两边同时乘以K,即K*( aX0+bY0 ) = d*K = c;由恒等关系,原方程的解(x0,y0):

 X0 = KX0 = c/d * X0y0 = KY0 = c/d *Y0

不定方程的通解

       若(x0,y0)是不定整数方程ax+by = c的一组解,则他的任意整数解都可以表示成(x0+ kb’, y0-ka’),其中a’ = a/gcd(a,b), b’ = b/gcd(a,b).

例题:

POJ  1061青蛙的约会  链接:    http://poj.org/problem?id=1061

求解模线性方程

方法跟上面类似,将同余方程转化为常规线性方程就可以了,跟上面一样,谈到同余方程的一个解时,其实指的是一个同余等价类....

具体内容待补充...

求模的逆元

待补充…

  • 13
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
好的,我可以为您解答算法导论第15章的双调欧几里得旅行商问题和整齐打印问题。 1. 双调欧几里得旅行商问题 双调欧几里得旅行商问题是指在平面上给定一些点,求一条简单闭合曲线,使得经过每个点恰好一次,且总路程最小。其中,欧几里得距离是指两点之间的距离。 该问题可以通过分治算法进行求解,具体步骤如下: 1)将所有的点按照x坐标从小到大排序; 2)将所有的点分成两部分,分别求出每一部分的最小路径,分别记为d1和d2; 3)在两部分的点中,选择一个点p,使得p在上一部分的最后一个点,同时p在下一部分的第一个点; 4)以p为分界点,将所有点分成上下两部分,并分别按照y坐标从小到大排序; 5)分别计算上半部分和下半部分的最小路径,分别记为d3和d4; 6)最终结果为d1+d2+d3+d4。 2. 整齐打印 整齐打印问题是指将一段文本分成若干行,每行不超过给定的宽度,使得每一行的长度尽可能相等,同时在每行末尾添加空格,使得每行的末尾恰好是一个单词的末尾,且每行的空格数最小。 该问题可以通过动态规划算法进行求解,具体步骤如下: 1)定义一个cost数组,其中cost[i][j]表示将第i个单词到第j个单词放在一行的代价; 2)定义一个lc数组,其中lc[i][j]表示将第i个单词到第j个单词放在一行的空格数; 3)计算cost和lc数组,具体方法如下: - 对于任意的i<=j,将第i到第j个单词放在一行,计算该行的空格数; - 如果该行的长度超过给定的宽度,则该方案不可行,否则将该方案的代价和空格数存入cost和lc数组中。 4)定义一个dp数组,其中dp[i]表示将前i个单词分成若干行的最小代价; 5)动态规划求解dp数组,具体方法如下: - 对于任意的1<=i<=n,将前i个单词分成若干行,计算最小代价; - 设最后一行的单词范围为[j+1, i],则dp[i] = min(dp[j] + cost[j+1][i]),其中j的范围为0<=j<i。 6)最终结果为dp[n]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值