一元三次方程求解
题目描述
有形如:
a
x
3
+
b
x
2
+
c
x
1
+
d
x
0
=
0
ax^3+bx^2+cx^1+dx^0=0
ax3+bx2+cx1+dx0=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 −100 至 100 之间),且根与根之差的绝对值 ≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2 位。
提示:记方程 f(x)=0,若存在 2 个数 x1 和 x2,且 x1<x2,f(x1)·f(x2)<0,则在 (x1,x2) 之间一定有一个根。
输入描述
一行,4 个实数 A,B,C,D。
输出描述
一行,3 个实根,并精确到小数点后 2 位。
用例输入 1
1 -5 -4 20
用例输出 1
-2.00 2.00 5.00
思路
仔细观察题目,发现根的范围在-100到100之间,同时要求输出的解精确到小数点后2位。也就是说,可以通过枚举-100.000到100.000,结合零点存在定理(题目所给提示),找出3个实根。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
double a, b, c, d; // 系数,记得开double
cin >> a >> b >> c >> d;
int f = 0; // 上一个x代入后左表达式的正负,初始化为0
for (double i = -100.000; i <= 100.000; i += 0.001)
{
double ans = a * i * i * i + b * i * i + c * i + d; // 左表达式的结果
if (ans == 0.00)
{
cout << fixed << setprecision(2) << i << ' ';
f = 0; // 若该i代入后结果等于0,说明在这个点找到解,则给f赋值0,防止后续重复输出解
}
else if (ans > 0)
{
if (f) // 当f = 0时,说明在这个点附近已经找到解,跳过
{
if (f == -1) // 当前后两个值的符号相反时,说明在两个i之间存在一个解
{
cout << fixed << setprecision(2) << i - 0.001 << ' ';
}
}
f = 1; // 更新上一个左表达式的正负
}
else
{
if (f) // 当f = 0时,说明在这个点附近已经找到解,跳过
{
if (f == 1) // 当前后两个值的符号相反时,说明在两个i之间存在一个解
{
cout << fixed << setprecision(2) << i - 0.001 << ' ';
}
}
f = -1; // 更新上一个左表达式的正负
}
}
return 0;
}