003使用深度学习方法检测水果小程序版本

本文详细介绍了如何使用各种深度学习模型,如AlexNet、DenseNet等在Python中进行图像识别和训练,以及如何通过Flask框架构建Web服务与小程序连接,展示了一系列实例,涵盖了手写汉字识别、目标检测、人脸识别等应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果图如下:

代码演示和demo仓库看b站视频:

到此一游7758258的个人空间哔哩哔哩bilibili

代码展示:

数据集图片放置在data文件夹下,大家可以根据自己需要比如识别其他物体,只需要模仿data文件夹下的文件命名放入图片即可运行训练模型了。

 

 运行01数据集文本生成制作.py可以将data文件夹下的图片保存成txt格式

 运行02train.py可以将txt中记录的数据读取并训练模型

训练可以使用的卷积神经网络包括: efficientnet、Alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNext、ShuffleNet、Swin_transformer、VGG等。

 训练结束后同时会生成评价指标图

运行03flask_server.py可以生成一个http接口连接小程序端和代码端,将小程序传来的图片调用本地训练好的模型识别之后再返回给小程序界面展示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值