普通查找算法和二分查找算法

(1) 普通的数据查找

    设想有一个1M的数据,我们如何在里面找到我们想要的那个数据。此时数据本身没有特征,所以我们需要的那个数据可能出现在数组的各个位置,可能在数据的开头位置,也可能在数据的结束位置。这种性质要求我们必须对数据进行遍历之后才能获取到对应的数据。

<?php
function find($arr,$value){
	$len=count($arr);
	if ($len<=0) {
		return -1;
	}
	for ($i=0; $i < $len ; $i++) { 
		if ($arr[$i]==$value) {
			return $i;
		}
	}
	return -1;
}
$list = array('23','38','22','45','23','67','31','15','41');
$index = find($list,41);
var_dump($index);

分析:

    由于我们不清楚这个数据判断究竟需要多少次。但是,我们知道,这样一个数据查找最少需要1次,那么最多需要n次,平均下来可以看成是(1+n)/2,差不多是n的一半。我们把这种比较次数和n成正比的算法复杂度记为o(n)。

(2)二分查找。上面的数据没有任何特征,这导致我们的数据排列地杂乱无章。试想一下,如果数据排列地非常整齐,那结果会是什么样的呢?那么,对一个有序的数组,我们应该怎么查找呢?二分法就是最好的方法。

<?php
function binary_find($arr,$value){
	$len=count($arr);//数组升序排序
	if ($len<=0) {
		return -1;
	}
	$start = 0;
	$end = $len-1;
	while ($start<=$end) {
		$middle = floor(($start + $end)/2);
		if ($arr[$middle]==$value) {
		 	return $middle;
		 }elseif ($value>$arr[$middle]) {
		 	$start = $middle +1;//后半部分查找
		 } else{
		 	$end = $middle -1 ;//前半部分查找
		 }
	}
	return -1;//没找到
}
$list= array('1','2','5','7','8','9','10','13','15');
$index = binary_find($list,7);
var_dump($index);

上面我们说到普通的数据查找算法复杂度是o(n)。那么我们可以用上面一样的方法判断一下算法复杂度。这种方法最少是1次,那么最多需要多少次呢?我们发现最多需要log(n+1)/log(2)。大家可以找个例子自己算一下,比如说7个数据,我们发现最多3次;如果是15个数据呢,那么最多4次;以此类推,详细的论证方法可以在《算法导论》、《计算机编程艺术》中找到。明显,这种数据查找的效率要比前面的查找方法高很多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值