In
Rn
, there is a globally defined orthonormal frame
For any tangent vector Xp∈Tp(Rn) , Xp=∑ni=1αiEip . Note that the coefficients αi are the ones that distinguish tangent vectors in Tp(Rn) . For a differentiable function f , the directional derivative X∗pf of f with respect to Xp is given by
We identify each Xp with the differential operator
Then the frame fields E1p,E2p,⋯,Enp are identified with
respectively. Unlike Rn , we cannot always have a globally defined frame on a differentiable manifold. So it is necessary for us to use local coordinate neighborhoods that are homeomorphic to Rn and the associated frames ∂∂x1,∂∂x2,⋯,∂∂xn .
Example. The points
(x,y,z)
are represented in terms of the spherical coordinates
(ϕ,θ)
as
By chain rule, one finds the standard basis ∂∂ϕ,∂∂θ for T∗S2 :
The frame field is not globally defined on S2 since ∂∂θ at ϕ=0,π . More generally, the following theorem holds.
Theorem. [Hairy Ball Theorem] If n is even, a non-vanishing C∞ vector field on Sn does not exist i.e. a C∞ vector field on Sn must take zero value at some point of Sn .
The Hairy Ball Theorem tells us why we have ball spots on our heads. It can be also stated as “you cannot comb a hairy ball flat.” There may also be a meteorological implication of this theorem. It may implicate that there must be at least one spot on earth where there is no wind at all. No-wind spot may be the eye of a hurricane. So, as long as there is wind (and there always is) on earth, there must be a hurricane somewhere at all times.
It has been known that all odd-dimensional spheres have at least one non-vanishing
C∞
vector field and that only spheres
S1,S3,S7
have a
C∞
field of basis. For instance, there are three mutually perpendicular unit vector fields on
S3⊂R4
i.e. a frame field: Let
S3={(x1,x2,x3,x4)∈R4:∑4i=1(xi)2=1}
. Then
form an orthonormal basis of C∞ vector fields on S3 .