Differentiable Manifolds and Tangent Spaces


In  Rn , there is a globally defined orthonormal frame

E1p=(1,0,,0)p, E2p=(0,1,0,,0)p,,Enp=(0,,0,1)p.

For any tangent vector  XpTp(Rn) Xp=ni=1αiEip . Note that the coefficients  αi  are the ones that distinguish tangent vectors in  Tp(Rn) . For a differentiable function  f , the directional derivative  Xpf  of  f  with respect to  Xp  is given by
Xpf=i=1nαi(fxi).

We identify each  Xp  with the differential operator
Xp=i=1nαixi:C(p)R.

Then the frame fields  E1p,E2p,,Enp  are identified with
(x1)p,(x2)p,,(xn)p

respectively. Unlike  Rn , we cannot always have a globally defined frame on a differentiable manifold. So it is necessary for us to use local coordinate neighborhoods that are homeomorphic to Rn  and the associated frames  x1,x2,,xn .

Example. The points  (x,y,z)  are represented in terms of the spherical coordinates  (ϕ,θ)  as

x=sinϕcosθ,y=sinϕsinθ,z=cosϕ, 0ϕπ, 0θ2π.

By chain rule, one finds the standard basis  ϕ,θ  for  TS2 :
ϕθ=cosϕcosθx+cosϕsinθysinϕz,=sinϕsinθx+sinϕcosθy.

The frame field is not globally defined on  S2  since  θ  at  ϕ=0,π . More generally, the following theorem holds.

Frame field on 2-sphere

Theorem. [Hairy Ball Theorem] If  n  is even, a non-vanishing  C  vector field on  Sn  does not exist i.e. a  C  vector field on  Sn  must take zero value at some point of  Sn .

The Hairy Ball Theorem tells us why we have ball spots on our heads. It can be also stated as “you cannot comb a hairy ball flat.” There may also be a meteorological implication of this theorem. It may implicate that there must be at least one spot on earth where there is no wind at all. No-wind spot may be the eye of a hurricane. So, as long as there is wind (and there always is) on earth, there must be a hurricane somewhere at all times.

It has been known that all odd-dimensional spheres have at least one non-vanishing  C  vector field and that only spheres  S1,S3,S7  have a  C  field of basis. For instance, there are three mutually perpendicular unit vector fields on  S3R4  i.e. a frame field: Let  S3={(x1,x2,x3,x4)R4:4i=1(xi)2=1} . Then

XYZ=x2x1+x2x2+x4x3x3x4,=x3x1x4x2+x1x3+x2x4,=x4x1+x3x2x2x3+x1x4

form an orthonormal basis of  C  vector fields on  S3 .

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
分析和代数在可微流形上的应用是数学中两个重要的分支。可微流形是一个具有光滑结构的空间,它可以用分析和代数的方法来研究和描述。 在分析中,我们关注可微流形上的函数和导数的性质。我们可以定义在流形上的函数,并研究它们的极限、连续性和可微性质。通过引入流形上的切向量和切空间的概念,我们可以定义流形上的导数和梯度。利用这些工具,我们可以研究函数的极值、积分和微分方程等问题。分析在可微流形上的应用包括微分几何、泛函分析和偏微分方程等领域。 在代数中,我们着重研究可微流形上的代数结构。我们可以定义在流形上的代数运算,并研究它们的性质和关系。代数在可微流形上的应用包括群论、李代数和李群等领域。例如,李代数是可微流形上的一种特殊的代数结构,它与流形上的切向量场相对应。李群是同时具有群和流形结构的空间,它在物理学中的应用十分广泛。 分析和代数在可微流形上的交叉应用使得我们可以更深入地理解和研究流形的性质。例如,在微分几何中,我们可以利用代数工具证明一些几何结构的存在性和唯一性。而在代数中,我们可以利用分析工具研究流形上的代数结构的连续性和可微性质。 总之,分析和代数在可微流形上的研究相互交叉,相辅相成,为我们深入地理解和应用于流形提供了有力的工具和方法。这对于数学的发展和应用具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值