Differentiable Manifolds and Tangent Spaces


In  Rn , there is a globally defined orthonormal frame

E1p=(1,0,,0)p, E2p=(0,1,0,,0)p,,Enp=(0,,0,1)p.

For any tangent vector  XpTp(Rn) Xp=ni=1αiEip . Note that the coefficients  αi  are the ones that distinguish tangent vectors in  Tp(Rn) . For a differentiable function  f , the directional derivative  Xpf  of  f  with respect to  Xp  is given by
Xpf=i=1nαi(fxi).

We identify each  Xp  with the differential operator
Xp=i=1nαixi:C(p)R.

Then the frame fields  E1p,E2p,,Enp  are identified with
(x1)p,(x2)p,,(xn)p

respectively. Unlike  Rn , we cannot always have a globally defined frame on a differentiable manifold. So it is necessary for us to use local coordinate neighborhoods that are homeomorphic to Rn  and the associated frames  x1,x2,,xn .

Example. The points  (x,y,z)  are represented in terms of the spherical coordinates  (ϕ,θ)  as

x=sinϕcosθ,y=sinϕsinθ,z=cosϕ, 0ϕπ, 0θ2π.

By chain rule, one finds the standard basis  ϕ,θ  for  TS2 :
ϕθ=cosϕcosθx+cosϕsinθysinϕz,=sinϕsinθx+sinϕcosθy.

The frame field is not globally defined on  S2  since  θ  at  ϕ=0,π . More generally, the following theorem holds.

Frame field on 2-sphere

Theorem. [Hairy Ball Theorem] If  n  is even, a non-vanishing  C  vector field on  Sn  does not exist i.e. a  C  vector field on  Sn  must take zero value at some point of  Sn .

The Hairy Ball Theorem tells us why we have ball spots on our heads. It can be also stated as “you cannot comb a hairy ball flat.” There may also be a meteorological implication of this theorem. It may implicate that there must be at least one spot on earth where there is no wind at all. No-wind spot may be the eye of a hurricane. So, as long as there is wind (and there always is) on earth, there must be a hurricane somewhere at all times.

It has been known that all odd-dimensional spheres have at least one non-vanishing  C  vector field and that only spheres  S1,S3,S7  have a  C  field of basis. For instance, there are three mutually perpendicular unit vector fields on  S3R4  i.e. a frame field: Let  S3={(x1,x2,x3,x4)R4:4i=1(xi)2=1} . Then

XYZ=x2x1+x2x2+x4x3x3x4,=x3x1x4x2+x1x3+x2x4,=x4x1+x3x2x2x3+x1x4

form an orthonormal basis of  C  vector fields on  S3 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值