Differentiable Manifolds and Tangent Spaces


In  Rn , there is a globally defined orthonormal frame

E1p=(1,0,,0)p, E2p=(0,1,0,,0)p,,Enp=(0,,0,1)p.

For any tangent vector  XpTp(Rn) Xp=ni=1αiEip . Note that the coefficients  αi  are the ones that distinguish tangent vectors in  Tp(Rn) . For a differentiable function  f , the directional derivative  Xpf  of  f  with respect to  Xp  is given by
Xpf=i=1nαi(fxi).

We identify each  Xp  with the differential operator
Xp=i=1nαixi:C(p)R.

Then the frame fields  E1p,E2p,,Enp  are identified with
(x1)p,(x2)p,,(xn)p

respectively. Unlike  Rn , we cannot always have a globally defined frame on a differentiable manifold. So it is necessary for us to use local coordinate neighborhoods that are homeomorphic to Rn  and the associated frames  x1,x2,,xn .

Example. The points  (x,y,z)  are represented in terms of the spherical coordinates  (ϕ,θ)  as

x=sinϕcosθ,y=sinϕsinθ,z=cosϕ, 0ϕπ, 0θ2π.

By chain rule, one finds the standard basis  ϕ,θ  for  TS2 :
ϕθ=cosϕcosθx+cosϕsinθysinϕz,=sinϕsinθx+sinϕcosθy.

The frame field is not globally defined on  S2  since  θ  at  ϕ=0,π . More generally, the following theorem holds.

Frame field on 2-sphere

Theorem. [Hairy Ball Theorem] If  n  is even, a non-vanishing  C  vector field on  Sn  does not exist i.e. a  C  vector field on  Sn  must take zero value at some point of  Sn .

The Hairy Ball Theorem tells us why we have ball spots on our heads. It can be also stated as “you cannot comb a hairy ball flat.” There may also be a meteorological implication of this theorem. It may implicate that there must be at least one spot on earth where there is no wind at all. No-wind spot may be the eye of a hurricane. So, as long as there is wind (and there always is) on earth, there must be a hurricane somewhere at all times.

It has been known that all odd-dimensional spheres have at least one non-vanishing  C  vector field and that only spheres  S1,S3,S7  have a  C  field of basis. For instance, there are three mutually perpendicular unit vector fields on  S3R4  i.e. a frame field: Let  S3={(x1,x2,x3,x4)R4:4i=1(xi)2=1} . Then

XYZ=x2x1+x2x2+x4x3x3x4,=x3x1x4x2+x1x3+x2x4,=x4x1+x3x2x2x3+x1x4

form an orthonormal basis of  C  vector fields on  S3 .

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
分析和代数在可微流形上的应用是数学中两个重要的分支。可微流形是一个具有光滑结构的空间,它可以用分析和代数的方法来研究和描述。 在分析中,我们关注可微流形上的函数和导数的性质。我们可以定义在流形上的函数,并研究它们的极限、连续性和可微性质。通过引入流形上的切向量和切空间的概念,我们可以定义流形上的导数和梯度。利用这些工具,我们可以研究函数的极值、积分和微分方程等问题。分析在可微流形上的应用包括微分几何、泛函分析和偏微分方程等领域。 在代数中,我们着重研究可微流形上的代数结构。我们可以定义在流形上的代数运算,并研究它们的性质和关系。代数在可微流形上的应用包括群论、李代数和李群等领域。例如,李代数是可微流形上的一种特殊的代数结构,它与流形上的切向量场相对应。李群是同时具有群和流形结构的空间,它在物理学中的应用十分广泛。 分析和代数在可微流形上的交叉应用使得我们可以更深入地理解和研究流形的性质。例如,在微分几何中,我们可以利用代数工具证明一些几何结构的存在性和唯一性。而在代数中,我们可以利用分析工具研究流形上的代数结构的连续性和可微性质。 总之,分析和代数在可微流形上的研究相互交叉,相辅相成,为我们深入地理解和应用于流形提供了有力的工具和方法。这对于数学的发展和应用具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值