优秀!华为诺亚方舟实验室联合中山大学发布新一代半/自监督的2D基准数据集SODA10M 32个城市采集的一千万张多样性丰富的无标签道路场景图片以及两万张带标签图片https://arxiv.org/pdf/2106.11118.pdf 2021年6月最新的对比一下数据集:SODA10M主要分为两个部分,分别包含一千万张无标签图片以及两万张有标签图片(标注了6种主要的人车场景类别,Pedestrian/Cyclist/Car/Truck/Tram/Tricycle)。采集的地区位置重要表格:详细代码地址:https://soda-2d.gi
26页综述,99篇参考文献!自动驾驶的3D目标检测技术!中国人民大学出品! 论文链接:https://arxiv.org/abs/2106.10823这是2021年6月最新的3D目标检测综述,很有参考意义!大家对自动驾驶以及3D目标检测越来越关注:传感器的优缺点:3D目标检测流程这个表很重要往期推荐阅读:王博Kings:无人驾驶系列知识入门到提高0王博Kings:无人驾驶系列知识入门到提高1王博Kings:无人驾驶系列知识入门到提高2王博Kings:无人驾驶系列知识入门到提高3王博Kings:无人驾驶系
收藏 | Python数据可视化的一些简单总结 点上方蓝字人工智能算法与Python大数据获取更多干货在右上方···设为星标★,第一时间获取资源本文为个人学习笔记记录近期绘图较多,在画图的时候总结了一些简单的绘图代码,希望能够帮助...
收藏 | 那些不得不了解的人工智能经典数据集~MNIST数据集下载及可视化! 点上方蓝字人工智能算法与Python大数据获取更多干货在右上方···设为星标★,第一时间获取资源MNIST数据集介绍MNIST数据集官网:http://yann.lecun.com/...
刚刚!YOLOv4重磅推出! 点上方蓝字Python人工智能与深度学习社区获取更多干货在右上方···设为星标★,第一时间获取资源刚刚YoloV4在arxiv更新了!https://arxiv.org/abs/20...
OpenCV | OpenCV实战从入门到精通系列二 -- OpenCV图像腐蚀 点上方蓝字Python人工智能与深度学习社区获取更多干货在右上方···设为星标★,与你不见不散本文为学习笔记记录本文是《OpenCV实战从入门到精通》系列之第2篇OpenCV | O...
OpenCV | OpenCV实战从入门到精通系列三 --canny边缘检测 点上方蓝字Python人工智能与深度学习社区获取更多干货在右上方···设为星标★,与你不见不散本文为学习笔记记录canny边缘检测本文是《OpenCV实战从入门到精通》系列之第3篇O...
OpenCV | OpenCV实战从入门到精通系列一 -- OpenCV宏的讲解 点上方蓝字Python人工智能与深度学习社区获取更多干货在右上方···设为星标★,与你不见不散本文来源学习笔记文章目录图像处理计算机视觉OpenCV网页OpenCV可应用的领域Ope...
OpenCV | OpenCV实战从入门到精通系列四 --常用函数讲解 点上方蓝字Python人工智能与深度学习社区获取更多干货在右上方···设为星标★,与你不见不散本文为学习笔记记录本文是《OpenCV实战从入门到精通》系列之第4篇:OpenCV | ...
收藏 | 机器学习分类算法 分类问题分类是一种基于一个或多个自变量确定因变量所属类别的技术。分类用于预测离散响应逻辑回归逻辑回归类似于线性回归,适用于因变量不是一个数值字的情况 (例如,一个“是/否”的响应)。它虽然被称为回归,但却是基于根据回归的分类,将因变量分为两类。如上所述,逻辑回归用于预测二分类的输出。例如,如果信用卡公司构建一个模型来决定是否通过向客户的发行信用卡申请,它将预测客户的信用卡是否会“违约”。首先对变量之间的关系进行线性回归以构建模型,分类的阈值假设为0.5。然后.
CVPR2021录取结果 | CVPR2021审稿结果 录取结果标号:20720822222422723023323424425026126526727427728028328828930030230531331532732934034435036436837237537638438739339839940941041241441541942042742843344344644845345645745846646849051151451
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet | 全面超越ResNet 与之前ViT、Detr、Deit等不同之处在于:本文针对ViT的特征多样性、结构化设计等进行了更深入的思考,提出了一种新颖的Tokens-to-Token机制,用于同时建模图像的局部结构信息与全局相关性,同时还借鉴了CNN架构设计思想引导ViT的骨干设计。最终,仅仅依赖于ImageNet数据,而无需JFT-300M预训练,所提方案即可取得全面超越ResNet的性能,且参数量与计算量显著降低;与此同时,在轻量化方面,所提方法只需简单减少深度与隐含层维度即可取得优于精心设计的MobileNet系列方案的性能..
总结 | 机器学习的基础图表! 在公众号【计算机视觉联盟】后台回复【9076】获取我的AI学习笔记;我的微信:Kingsplusa; --by王博Kings,985AI博士,CSDN博客专家,华为云专家本篇文章为学习笔记记录,参考Alan Morrison,机器之心一、机器学习概览1. 什么是机器学习?机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。2. 机器学习和人工智能的关系机...
Apollo无人驾驶课程笔记2-高精度地图 在公众号【计算机视觉联盟】后台回复【9076】获取我的AI学习笔记;我的微信:Kingsplusa; --by王博Kings,985AI博士,CSDN博客专家,华为云专家本系列《无人驾驶干货铺》笔记:自动驾驶 | Apollo无人驾驶课程笔记0自动驾驶 | Apollo无人驾驶课程笔记1第二课: 高精度地图课程简介:了解高精度地图的实现逻辑,这是 Apollo 定位、感知、规划模块的基础。1.地图简介2.Sebastian介绍高精度地图3.高精度地图vs...