中国剩余定理

简介

  • Chinese remainder theorem(CRT) \text{Chinese remainder theorem(CRT)} Chinese remainder theorem(CRT),中国古代求解一次同余式组的方法。
    是数论中一个重要定理,又称孙子定理。

公式

  • 如果有一个一元线性同余方程组 ( S ) : { x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) ⋮ x ≡ a n ( m o d m n ) (S):\begin{cases} x \equiv a_1 \pmod{m_1}\\ x \equiv a_2 \pmod{m_2}\\ \quad\vdots\\ x \equiv a_n \pmod{m_n}\\ \end{cases} (S):xa1(modm1)xa2(modm2)xan(modmn)
    用现代数学的语言来说明的话,中国剩余定理给出了 ( S ) (S) (S) 有解的判定条件,并用构造法给出了在有解情况下解的具体形式。

  • 说明:
    如果整数 m 1 , m 2 , … , m n m_1,m_2,\dots,m_n m1,m2,,mn 两两互质,则对任意的整数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an ,方程组有解,并且通解可以用如下方式构造得到:

    • M = m 1 × m 2 × ⋯ × m n = ∏ i = 1 n m i M=m_1×m_2×\cdots×m_n=\prod\limits_{i=1}^nm_i M=m1×m2××mn=i=1nmi,即为整数 m 1 , m 2 , … , m n m_1,m_2,\dots,m_n m1,m2,,mn 的乘积;
    • M i = M m i , ∀ i ∈ { 1 , 2 , … , n } M_i=\dfrac M{m_i},\forall i\in\{1,2,\dots,n\} Mi=miM,i{1,2,,n},是除了 m i m_i mi 之外的 n − 1 n-1 n1 个整数的乘积;
    • t i t_i ti M i M_i Mi m i m_i mi意义下的逆元,即 M i t i ≡ 1 ( m o d m i ) , ∀ i ∈ { 1 , 2 , … , n } M_it_i\equiv1\pmod{m_i},\forall i\in\{1,2,\dots,n\} Miti1(modmi),i{1,2,,n}
    • 方程组 ( S ) (S) (S) 的通解形式为:
      x = a 1 t 1 M 1 + a 2 t 2 M 2 + ⋯ + a n t n m n + k M = ∑ i = 1 n a i t i M i + k M , k ∈ Z x=a_1t_1M_1+a_2t_2M_2+\cdots+a_nt_nm_n+kM=\sum\limits_{i=1}^na_it_iM_i+kM,k\in\Z x=a1t1M1+a2t2M2++antnmn+kM=i=1naitiMi+kM,kZ
      在膜 M M M 的意义下,方程组 ( S ) (S) (S) 只有一个解: x ≡ ∑ i = 1 n a i t i M i ( m o d M ) x\equiv\sum\limits_{i=1}^na_it_iM_i\pmod M xi=1naitiMi(modM)

证明

从假设可知,对于 ∀ i ∈ { 1 , 2 , ⋯   , n } ∀i∈\{1,2,\cdots,n\} i{1,2,,n} ,由于 ∀ j ∈ { 1 , 2 , ⋯   , n } , j ≠ i , gcd ( m i , m j ) = 1 ∀j∈\{1,2,\cdots,n\},j\ne i,\text{gcd}(m_i,m_j)=1 j{1,2,,n},j̸=i,gcd(mi,mj)=1,所以 gcd ( m i , M i ) = 1 \text{gcd}(m_i,M_i)=1 gcd(mi,Mi)=1
这说明存在整数 t i t_i ti 使 t i M i ≡ 1 ( m o d m i ) t_iM_i\equiv1\pmod{m_i} tiMi1(modmi)
∴ a i t i M i ≡ a i ⋅ 1 ≡ a i ( m o d m i ) ∴a_it_iM_i\equiv a_i · 1\equiv a_i\pmod{m_i} aitiMiai1ai(modmi)
∀ j ∈ { 1 , 2 , ⋯   , n } , j ≠ i , a i t i M i ≡ 0 ( m o d m j ) \quad ∀j∈\{1,2,\cdots,n\},j≠i,a_it_iM_i\equiv 0\pmod{m_j} j{1,2,,n},j̸=i,aitiMi0(modmj)
∴ x = ∑ i = 1 n a i t i M i ∴x=\sum\limits_{i=1}^na_it_iM_i x=i=1naitiMi
∀ i ∈ { 1 , 2 , ⋯   , n } , \quad∀i∈\{1,2,\cdots,n\}, i{1,2,,n},
x = a i t i M i + ∑ j ≠ i a j t j M j ≡ a i t i M i + ∑ j ≠ i 0 ≡ a i ( m o d m i ) \quad\begin{aligned} x &=a_it_iM_i+\sum\limits_{j≠i}a_jt_jM_j \\ &\equiv a_it_iM_i+\sum\limits_{j≠i}0 \\ &\equiv a_i\pmod{m_i} \end{aligned} x=aitiMi+j̸=iajtjMjaitiMi+j̸=i0ai(modmi)
这说明 x x x 就是方程组 ( S ) (S) (S) 的一个解。

假设 x 1 , x 2 x_1,x_2 x1,x2 都是方程组 ( S ) (S) (S) 的解
易知 ∀ i ∈ { 1 , 2 , ⋯   , n } , x 1 − x 2 ≡ 0 ( m o d m i ) ∀i∈\{1,2,\cdots,n\},x_1-x_2\equiv 0 \pmod{m_i} i{1,2,,n},x1x20(modmi)
∵ m 1 , m 2 , … , m n ∵m_1,m_2,\dots,m_n m1,m2,,mn 两两互质
∴ M = ∏ i = 1 n m i ∴M=\prod\limits_{i=1}^nm_i M=i=1nmi 整除 x 1 − x 2 x_1-x_2 x1x2
∴ ∴ 方程组 ( S ) (S) (S) 的任意两个解都相差 M M M 的整数倍
∵ x = ∑ i = 1 n a i t i M i ∵x=\sum\limits_{i=1}^na_it_iM_i x=i=1naitiMi 是一个解
∴ ∴ 方程组 ( S ) (S) (S) 所有的解的集合就是:
{ k M + ∑ i = 1 n a i t i M i ; k ∈ Z } \quad \{kM+\sum\limits_{i=1}^na_it_iM_i; \quad k∈\Z\} {kM+i=1naitiMi;kZ}


下一篇:拓展中国剩余定理

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值