0.食用指北
- ( a , b ) (a,b) (a,b) 表示 gcd ( a , b ) \gcd(a,b) gcd(a,b) ,也就是 a a a 与 b b b 的最大公约数;
- [ a , b ] [a,b] [a,b] 表示 lcm ( a , b ) \operatorname{lcm}(a,b) lcm(a,b) ,也就是 a a a 与 b b b 的最小公倍数;
- i n v ( a , b ) inv(a,b) inv(a,b) 表示 a a a 在膜 b b b 意义下的逆元;
- p p p 的简化剩余系是什么?
当且仅当 ( x , p ) = 1 且 x < p (x,p)=1且x<p (x,p)=1且x<p 时, x x x 属于 p p p 的简化剩余系。 - [ x , y ) [x,y) [x,y) 表示左闭右开的区间;
- 重要结论均用红色突出了,可以重点阅读这些部分;
- 学
2.3
前,你需要知道线性筛。
1.欧拉函数基础概念
1.1 欧拉函数的定义
欧拉函数表示一个数的简化剩余系的元素数。
或者说, 对 于 一 个 数 p , 它 的 欧 拉 函 数 值 即 为 [ 1 , p ) ∩ Z 内 与 p 互 质 的 数 的 个 数 。 \color{red}对于一个数 p ,它的欧拉函数值即为 [1,p)\cap\Z 内与 p 互质的数的个数。 对于一个数p,它的欧拉函数值即为[1,p)∩Z内与p互质的数的个数。
特 殊 地 , 1 的 欧 拉 函 数 值 是 1 。 \color{red}特殊地,1 的欧拉函数值是 1 。 特殊地,1的欧拉函数值是1。
欧 拉 函 数 的 数 学 符 号 写 作 ϕ , 手 写 体 为 φ 。 \color{red}欧拉函数的数学符号写作 \phi ,手写体为 \varphi 。 欧拉函数的数学符号写作ϕ,手写体为φ。
1.2 欧拉函数的基本性质
- 1.2.1 钦定 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1.
- 1.2.2 若 p 为 质 数 , 则 φ ( p ) = p − 1. \color{red}若p为质数,则\varphi(p)=p-1. 若p为质数,则φ(p)=p−1.
- 1.2.3 若 p p p 为质数,则 φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pk−pk−1.
- 1.2.4 欧 拉 函 数 是 积 性 函 数 , 也 就 是 说 若 ( M , N ) = 1 , 则 φ ( M N ) = φ ( M ) φ ( N ) . \color{red}欧拉函数是积性函数,也就是说若(M,N)=1,则 \varphi(MN)=\varphi(M)\varphi(N). 欧拉函数是积性函数,也就是说若(M,N)=1,则φ(