欧拉函数详解

本文详细介绍了欧拉函数的基础概念,包括定义、基本性质和计算方法,并探讨了欧拉定理及其扩展形式。文章提供了O(n)和O(nloglogn)两种求解欧拉函数的算法,并通过例题展示了欧拉函数在数论问题中的应用,如求解GCD问题。此外,文章还提到了与费马小定理的关系及实际题目中的应用。
摘要由CSDN通过智能技术生成

0.食用指北

  1. ( a , b ) (a,b) (a,b) 表示 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) ,也就是 a a a b b b 的最大公约数;
  2. [ a , b ] [a,b] [a,b] 表示 lcm ⁡ ( a , b ) \operatorname{lcm}(a,b) lcm(a,b) ,也就是 a a a b b b 的最小公倍数;
  3. i n v ( a , b ) inv(a,b) inv(a,b) 表示 a a a 在膜 b b b 意义下的逆元;
  4. p p p 的简化剩余系是什么?
    当且仅当 ( x , p ) = 1 且 x < p (x,p)=1且x<p (x,p)=1x<p 时, x x x 属于 p p p 的简化剩余系。
  5. [ x , y ) [x,y) [x,y) 表示左闭右开的区间;
  6. 重要结论均用红色突出了,可以重点阅读这些部分;
  7. 2.3前,你需要知道线性筛。

1.欧拉函数基础概念

1.1 欧拉函数的定义

欧拉函数表示一个数的简化剩余系的元素数。
或者说, 对 于 一 个 数 p , 它 的 欧 拉 函 数 值 即 为 [ 1 , p ) ∩ Z 内 与 p 互 质 的 数 的 个 数 。 \color{red}对于一个数 p ,它的欧拉函数值即为 [1,p)\cap\Z 内与 p 互质的数的个数。 p[1,p)Zp
特 殊 地 , 1 的 欧 拉 函 数 值 是 1 。 \color{red}特殊地,1 的欧拉函数值是 1 。 11
欧 拉 函 数 的 数 学 符 号 写 作 ϕ , 手 写 体 为 φ 。 \color{red}欧拉函数的数学符号写作 \phi ,手写体为 \varphi 。 ϕφ

1.2 欧拉函数的基本性质

  • 1.2.1 钦定 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1.
  • 1.2.2 若 p 为 质 数 , 则 φ ( p ) = p − 1. \color{red}若p为质数,则\varphi(p)=p-1. pφ(p)=p1.
  • 1.2.3 若 p p p 为质数,则 φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pkpk1.
  • 1.2.4 欧 拉 函 数 是 积 性 函 数 , 也 就 是 说 若 ( M , N ) = 1 , 则 φ ( M N ) = φ ( M ) φ ( N ) . \color{red}欧拉函数是积性函数,也就是说若(M,N)=1,则 \varphi(MN)=\varphi(M)\varphi(N). (M,N)=1φ(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值