给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点(i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为(i, ai) 和(i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例 :
输入 : [1, 8, 6, 2, 5, 4, 8, 3, 7]
输出 : 49
我做题的想法:从两头开始计算,每次比较两头的大小,如果左边的值小,那么把左边的指针加1,如果右边的值小,将右边的指针减1,再把横坐标的值减1。
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
int maxArea(int* height, int heightSize) {
int left = 0;
int right = heightSize - 1;
int count = 0; //用来保存结果
int a = heightSize - 1; //横坐标的长度
while (left <right)
{
if (height[left]<height[right])
{
if (count < a*height[left])
{
count = a*height[left];
}
left++;
a--;
}
else if (height[left] >= height[right])
{
if (count < a*height[right])
{
count = a*height[right];
}
right--;
a--;
}
}
return count;
}
int main()
{
int nums[] = { 1, 8, 6, 2, 5, 4, 8, 3, 7 };
int len = sizeof(nums) / sizeof(0);
int a = maxArea(nums,len);
printf("%d\n",a);
system("pause");
return 0;
}