BN原理
Batch Normalization(批量归一化)是一种用于加速深度神经网络训练并提高其稳定性的技术。它通过在每一层的激活函数之前对数据进行归一化处理,使得每一层的输入分布更加稳定,从而加速训练过程并提高模型性能。
具体来说,Batch Normalization在每个小批量(mini-batch)数据上进行归一化处理,步骤如下:
-
计算批量均值和方差:对于每个batch数据,计算其均值
和方差
-
归一化:使用计算得到的均值和方差对每个数据点进行归一化,使其均值为0、方差为1,
,其中
是一个小常数,防止除零错误
-
缩放和平移:为了保留模型的表达能力,对归一化后的数据进行缩放和平移操作
,其中

最低0.47元/天 解锁文章
1354

被折叠的 条评论
为什么被折叠?



