Batch Normalization原理与代码实现

BN原理

Batch Normalization(批量归一化)是一种用于加速深度神经网络训练并提高其稳定性的技术。它通过在每一层的激活函数之前对数据进行归一化处理,使得每一层的输入分布更加稳定,从而加速训练过程并提高模型性能。

具体来说,Batch Normalization在每个小批量(mini-batch)数据上进行归一化处理,步骤如下:

  1. 计算批量均值和方差:对于每个batch数据,计算其均值\mu和方差\sigma

  2. 归一化:使用计算得到的均值和方差对每个数据点进行归一化,使其均值为0、方差为1,\hat{x} = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}},其中\epsilon是一个小常数,防止除零错误

  3. 缩放和平移:为了保留模型的表达能力,对归一化后的数据进行缩放和平移操作\hat{x} = \gamma * \hat{x} + \beta,其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值