G皮T
计算机科学与技术本科,计算机技术硕士,现任职于某互联网公司,担任测试开发工程师。CSDN云原生领域优质创作者、博客专家。书籍《大数据测试开发工程师的第一本书》正在积极撰写中,敬请期待。微信公众号:大数据与AI实验室。《Java 百“练”成钢》连载中,欢迎关注!
展开
-
【自然语言处理】基于 NLP 的电影评论情感分析模型比较
一段时间以来,使用机器学习的 NLP 任务借助 BERT(Bidirectional Encoder Representations from Transformers)模型被认为是当前的黄金标准。这些模型通常用于我们日常的许多语言处理任务,比如谷歌搜索自动补全等。然而,我们会怀疑 BERT 模型是否是所有语言处理任务的最佳选择?原创 2023-01-22 23:30:11 · 3885 阅读 · 0 评论 -
【自然语言处理】情感分析(一):基于 NLTK 的 Naive Bayes 实现
朴素贝叶斯(Naive Bayes)分类器可以用来确定输入文本属于某一组类别的概率。例如,预测评论是正面的还是负面的。它是 “朴素的”,它假设文本中的单词是独立的(但在现实的自然人类语言中,单词的顺序传达了上下文信息)。尽管有这些假设,但朴素贝叶斯在使用少量训练集预测类别时具有很高的准确性。原创 2023-01-25 21:00:43 · 1740 阅读 · 0 评论 -
【自然语言处理】情感分析(二):基于 scikit-learn 的 Naive Bayes 实现
在上一篇博客 情感分析(一):基于 NLTK 的 Naive Bayes 实现 中,我们介绍了基于 NLTK 实现朴素贝叶斯分类的方法,本文将基于 scikit-learn 再次介绍朴素贝叶斯分类的实现方法。原创 2023-01-26 11:46:44 · 1403 阅读 · 0 评论 -
【自然语言处理】情感分析(三):基于 Word2Vec 的 LSTM 实现
当我们训练深度学习神经网络的时候通常希望能获得最好的泛化性能(generalization performance,即可以很好地拟合数据)。但是所有的标准深度学习神经网络结构如全连接多层感知机都很容易过拟合:当网络在训练集上表现越来越好,错误率越来越低的时候,实际上在某一刻,它在测试集的表现已经开始变差。原创 2023-01-27 01:11:06 · 2896 阅读 · 4 评论 -
【自然语言处理】情感分析(四):基于 Tokenizer 和 Word2Vec 的 CNN 实现
本文将用卷积神经网络(Convolutional Neural Networks,CNN)替换上一篇博客中的 LSTM。LSTM 是循环神经网络(Recurrent Neural Network,RNN)的一种。原创 2023-01-27 16:26:08 · 1566 阅读 · 2 评论 -
【自然语言处理】情感分析(五):基于 BERT 实现
即使大家没用过 BERT(Bidirectional Encoder Representation from Transformers),相信对它在自然语言处理任务中的优越表现也早已有所耳闻。本篇博客将重点介绍 BERT 是如何助力情感分析的。工欲善其事必先利其器,在正式开始之前,先介绍几个要用到的包。原创 2023-01-29 18:21:16 · 3222 阅读 · 1 评论