【主题建模】一种基于深度学习的主题建模方法:BERTopic(实战篇)

本文介绍了一种基于深度学习的主题建模方法BERTopic,详细阐述了加载数据、预处理、使用BERTopic建模的过程,包括嵌入、降维、聚类等步骤,并提到了可视化结果和评估方法。BERTopic利用了BERT的语义信息,提供多样化的主题表示,并支持多种可视化工具,如条形图、文档可视化和主题热图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 95
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G皮T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值