有限脉冲响应(FIR)数字滤波器设计详解
在数字信号处理领域,FIR 滤波器因其线性相位特性和稳定性而被广泛应用。本文将详细介绍两种流行的 FIR 滤波器设计方法:使用 Kaiser 窗的傅里叶级数法和 Parks - McClellan 优化法,并提供计算 FIR 滤波器频率响应的 C 代码。
1. 使用 Kaiser 窗确定 FIR 滤波器系数
1.1 问题描述
设计一个带通滤波器,满足以下规格:
- 通带频率:$f_{pass1} = 4 kHz$,$f_{pass2} = 5 kHz$
- 阻带频率:$f_{stop1} = 2 kHz$,$f_{stop2} = 8 kHz$
- 通带衰减:$a_{pass1} = -0.5 dB$
- 阻带衰减:$a_{stop1} = a_{stop2} = -50 dB$
- 采样频率:$f_{samp} = 20 kHz$
1.2 解决方案步骤
- 计算通带和阻带误差 :
- 通带误差 $\delta_p$:
$\delta_p = 10^{\frac{-0.5}{20}} - 1 = 0.055939$ - 阻带误差 $\delta_s$:
$\delta_s = 10^{\frac{-25}{10}} = 0.0031623$
- 通带误差 $\delta_p$:
- 计算相关参数 :
- 利用公式计算 $A = 50$,$\beta
订阅专栏 解锁全文
84

被折叠的 条评论
为什么被折叠?



