15、有限脉冲响应(FIR)数字滤波器设计详解

有限脉冲响应(FIR)数字滤波器设计详解

在数字信号处理领域,FIR 滤波器因其线性相位特性和稳定性而被广泛应用。本文将详细介绍两种流行的 FIR 滤波器设计方法:使用 Kaiser 窗的傅里叶级数法和 Parks - McClellan 优化法,并提供计算 FIR 滤波器频率响应的 C 代码。

1. 使用 Kaiser 窗确定 FIR 滤波器系数

1.1 问题描述

设计一个带通滤波器,满足以下规格:
- 通带频率:$f_{pass1} = 4 kHz$,$f_{pass2} = 5 kHz$
- 阻带频率:$f_{stop1} = 2 kHz$,$f_{stop2} = 8 kHz$
- 通带衰减:$a_{pass1} = -0.5 dB$
- 阻带衰减:$a_{stop1} = a_{stop2} = -50 dB$
- 采样频率:$f_{samp} = 20 kHz$

1.2 解决方案步骤

  1. 计算通带和阻带误差
    • 通带误差 $\delta_p$:
      $\delta_p = 10^{\frac{-0.5}{20}} - 1 = 0.055939$
    • 阻带误差 $\delta_s$:
      $\delta_s = 10^{\frac{-25}{10}} = 0.0031623$
  2. 计算相关参数
    • 利用公式计算 $A = 50$,$\beta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值