自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

人工智能视觉分析算法学习实践和经验分享。

python、pytorch,目标检测,分类识别,关键点检测

  • 博客(97)
  • 资源 (4)
  • 收藏
  • 关注

原创 人工智能算法工程师成长曲线

机器视觉算法工程师成长之路学习导图(后续将持续更新)模块一:图像基础常用的图形文件存储格式源始图像数据:raw image模块二:工具IDE和环境模块三:语言工具和库模块四:人工智能--神经网络算法模块五:参考文献学习导图(后续将持续更新)Mon 02Mon 09Mon 16Mon 23Mon 30Mon 06Mon 13Mon 20Mon 27Mon 03Mon 10Mon 17图像基础 ...

2020-03-26 12:01:50 698

原创 Python中class的用法

类是面向对象编程(Object-Oriented Programming, OOP)的核心概念之一,它允许我们定义具有属性和方法的对象类型。

2024-05-21 11:39:09 1012

原创 python中特殊的静态方法__new__

设计模式主要用于解决在软件设计和开发中经常遇到的特定问题,它们提供了一种可重用的解决方案,使得代码更加健壮、可维护和可扩展。

2024-05-21 11:14:46 783

原创 python函数详解

1. 函数定义,调用;参数,可变参数,关键字参数解析。2. 函数的高阶应用:递归,高阶函数,闭包,装饰器。3. 装饰器函数在Python中非常有用,特别是在需要为多个函数添加相同功能时。通过使用装饰器,我们可以避免重复编写相同的代码,并使得代码更加模块化和可维护。4. 匿名函数短小精悍,非常好用。但它们并不适合定义复杂的函数或包含多个语句的函数。对于更复杂的逻辑,通常应该使用常规的def语句来定义函数。

2024-05-16 15:33:01 964

原创 ModuleNotFoundError: No module named ‘openpyxl‘的解决方案

ModuleNotFoundError: No module named ‘openpyxl’ 这个错误表示你的 Python 环境中没有安装 openpyxl 这个模块。openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的 Python 库。

2024-05-15 18:08:49 1090 1

原创 python文件操作常用方法(读写txt、xlsx、CSV、和json文件)

1.文本对open()函数,seek()函数, tell() 函数,flush()函数等文件操作函数做了简单的介绍,和实例应用。2.使用文件工具,pandas,csv,json等操作txt,cvs,excel,json文件。

2024-05-15 17:36:37 1067

原创 Python字符串操作方法详解

python字符串内置方法。如比较、表示、属性访问。

2024-05-14 13:00:58 259

原创 YOLOv8分类识别训练配置详细

注意,此处数据与分割,检测,关键点算法的数据输入yaml不同.data=数据集文件夹地址imageFER(根据自己存放地址而变)注意:# 加载预训练模型方法导入分类模型参数,可能因为自行下载的YOLOv8-cls.pt预训练模型文件有问题,会报bug。根据损失函数,精确度曲线,调整参数或新增数据均衡类别。每一个数字标签文件夹里面是面部表情图片。,建议使用在线下载最新模型。3.掌握训练结果分析。

2024-04-09 18:03:42 534 7

原创 ModuleNotFoundError: No module named ‘ultralytics.utils‘

ModuleNotFoundError: No module named 'ultralytics.utils'原因分析与问题解决。

2024-04-09 17:05:29 731

原创 json.decoder.JSONDecodeError: Extra data: line 1 column 332 (char 331)

采用open函数读写模式修改json文件字段。

2023-11-30 11:44:20 537

原创 yolov8-pose姿势估计,站立识别

姿势估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。姿态估计模型的输出是表示图像中对象上的关键点的一组点,通常连同每个点的置信度分数。当您需要识别场景中对象的特定部分以及它们彼此之间的位置时,选择姿势估计。本文,利用关键点位置余弦函数,识别出站立动作。

2023-11-27 22:27:46 1881

原创 FileNotFoundError: train: No labels found in xxx\train.cache, can not start training.

Yolo检测模型训练时报错: FileNotFoundError: train: No labels found in xxx\train.cache, can not start training.原因:数据集命名或数据集地址书写有误。很有可能是配置数据集参数的yaml文件里面标注的目的地,与实际存放的位置不一致。解决方案:配置地址与实际对应,修改一致后运行正常。

2023-11-09 16:03:57 537 3

原创 pytorch的whl文件安装

命令行安装pytorch1.5whl文件( cu92 python3.7)

2023-07-11 12:21:59 4237 2

原创 nn.AdaptiveAvgPool2d与AdaptiveMaxPool2d

PyTorch的自适应池化Adaptive Pooling的功用。如果你想直接确定全连接层的维度,可以使用自适应池化,无论前面的卷积池化的维度变成什么,最后的输出维度都是batchsize*channels*n*n

2022-10-13 17:42:34 1873 1

原创 python从网络摄像机取视频流的步骤

使用opencv-python取网络摄像机视频流。

2022-10-12 17:43:59 4927 2

原创 def func(self, x: Tensor) -> Dict[str, Tensor]:此定义中的特殊符号是什么意思

python定义函数时首行里的冒号和箭头的意义

2022-09-15 10:18:32 1907

原创 Linux上安装虚拟conda环境和神经网络学习框架pytorch

Linux系统安装Anaconda3;Ubuntu上配置GPU显卡驱动,安装显卡toolkit;创建虚拟环境,安装深度学习框架; 掌握Linux系统下应用Anaconda3 命令;一些典型命令。

2022-07-29 18:09:41 993

原创 Ubuntu上配置GPU环境

Linux系统安装Anaconda3;Ubuntu上配置GPU显卡驱动,安装显卡toolkit;创建虚拟环境,安装深度学习框架; 掌握Linux系统下应用Anaconda3 命令;一些典型命令。

2022-07-29 18:02:38 7573 3

原创 Ubuntu系统anaconda安装初始化和env环境切换

Linux系统安装Anaconda3配置GPU,安装显卡toolkit;创建虚拟环境,安装深度学习框架;掌握Linux系统下应用Anaconda3 命令; 一些典型命令。

2022-07-29 16:10:02 6082 2

原创 AttributeError: module ‘skimage.draw‘ has no attribute ‘circle‘

scikit-image当前最新的0.19.3版本优化删除了circle函数,我的老版本下写代码不兼容,报错信息:AttributeError: module 'skimage.draw' has no attribute 'circle'解决方法有二,详情请直接翻到最后。

2022-06-20 16:18:55 3780 1

原创 【图像-关键点json标签】的数据集生成器

前面做了一篇关于[服装关键点检测算法](https://blog.csdn.net/beauthy/article/details/114318277)的博客,因为重点在算法模型上,所以数据集这一块做的比较粗糙。评论区对于数据集的问题还蛮多,原文标签存储为csv文件,大家自己的标签多为json文件,所以,问我怎么读取或转csv文件怎么处理。本文就图像-关键点json文件标签的数据集进行处理。

2022-05-24 15:51:18 1298 1

原创 利用PIL.Image生成图像标签数据集

前面做了一篇关于[服装关键点检测算法](https://blog.csdn.net/beauthy/article/details/114318277)的博客,因为重点在算法模型上,所以数据集这一块做的比较粗糙。评论区对于数据集的问题还蛮多,所以,我在这篇文章重点介绍一种数据集制作方法:利用PIL.Image生成图像标签数据集。

2022-05-23 15:31:21 1124

原创 利用scikit-image库生成图像标签数据集

方法一:利用scikit-image库生成图像标签数据集提示:此处独立使用图像库scikit-image。即仅用io读图和显示安装OpenCV的时候,安装opencv_python:pip install scikit-image 导入的时候:from skimage import io, transform, draw数据集下载:数据集描述:pytorch生成图像标签数据集的三种方式–前言Skimage模块常用子模块Skimage模块常用子模块:io用于图像读取、保存,显示图片和视频。c

2022-05-20 17:37:01 928 1

原创 pytorch生成图像标签数据集的三种方式

前面做了一篇关于[服装关键点检测算法](https://blog.csdn.net/beauthy/article/details/114318277)的博客,因为重点在算法模型上,所以数据集这一块做的比较粗糙。评论区对于数据集的问题还蛮多,所以,我在这篇文章重点介绍一下数据集。本文将提供三种生成数据集方案的总接口。

2022-05-20 17:28:40 5827 1

原创 利用opencv-python库生成图像标签数据集

前面做了一篇关于[服装关键点检测算法](https://blog.csdn.net/beauthy/article/details/114318277)的博客,因为重点在算法模型上,所以数据集这一块做的比较粗糙。评论区对于数据集的问题还蛮多,所以,我在这篇文章重点介绍一下数据集。我将提供三种生成数据集的方案。供大家参考。本文为第一种。

2022-05-20 17:02:49 2709 1

原创 AttributeError: ‘torch.Size‘ object has no attribute ‘numpy‘

项目场景:提示:这里是图像-关键点标签,制作数据集生成器时的一个bug项目场景:图像和标签数据制作数据集生成器:数据集预处理过程中,需要改变图像的尺寸,因为标签数据是坐标群,需要和图像同步变化。这时候,有图像变化前后的比例来计算坐标变化后的结果。由于,采用的图像变换是torchvision封装的transforms中的transforms变换方法,返回的数据为torch.Tensor。返回的size为torch.Size。运行中,函数 __getitem__报错:def __getitem__(

2022-05-19 17:29:25 1643

原创 anaconda命令行切换工作目录

项目场景:anaconda prompt 启动默认%HOME%anaconda虚拟环境安装在D盘,启动anaconda prompt命令行模式时,默认工作目录为:c:\User\Administrator,源码安装包或者代码文件通常不在C盘,所以通过命令行运行程序会要求切换到该工作路径。但是,切换到其他盘的命令,如cd E:\,并不能生效。解决方案:修改anaconda prompt的开始路径具体解决方案如下:第一步:打开windows开始菜单,找到anaconda prompt,右击,打

2022-04-11 14:55:05 12010 2

原创 python标准库abc的实用技巧

前言abc标准库最大的作用是指引如何远离造轮子的怪圈。python本身并没有抽象类,抽象函数。需要通过abc库提供。abc和程序设计模式密切相关。程序设计模式参见blog文献。抽象超类:接口模式实现方式:在Python3.0中,定义class类使用一个关键字参数metaclass等于抽象超类ABCMeta,以及特殊的@装饰器语法实现,必须由子类重载的方法用assert或者raise NotImplementedError异常来指明子类必须重载。固,当子类没有重载抽象方法时不能实例化的。from

2022-04-08 17:23:00 2504 1

原创 python 的scrapy框架

目标:AI设计基础–采集数据作为AI算法工程师,面对新需求,明明方法千万条,数据没一条。老是为了做一个功能,费尽心思求数据而不得,或找到现有数据集不理想,匹配度不高。本文就学习一下怎样快速下载数据资源(资源:文字文章,图像,影像)。数据不求人。熟悉网页请求库,urllib,requests,beautiful soup。重点学习scrapy框架,学会灵活使用这个工具。学习内容:scrapy框架的使用给我的感觉和Django框架的应用差不多。本节将简要介绍Scrapy的安装,命令和实现过程

2022-04-07 10:32:51 2194

原创 xpath选择器和css选择器的用法

目标:xpath选择器和css选择器的用法前文使用scrapy爬虫框架用到selector选择器了,本文补充两种选择器的使用细节 xpath选择器语法 css选择器语法 掌握常用的xpath选择器和css选择器知识就像是抽象出来的规则。学习在大脑中分类。内容:xpath选择器语法XPath 使用路径表达式来选取 XML或HTML 文档中的节点或节点集。节点是通过沿着路径 (path) 或者步 (steps) 来选取的。选取节点:xml中的节点是以树结构(二叉树的树)来命名的,和HT

2022-03-29 12:27:14 3811

原创 pytorch常用预训练模型下载网址

pytorch框架:常用模型的预训练参数六大分类模型下载方式和使用方法:ResnetinceptionDensenetAlexnetvggnetResnet:model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',

2022-03-03 16:57:27 5311

原创 ValueError: mode mismatch

项目场景:PIL库Image模块处理数组合并成3通道RGB图像项目中,使用Pytorch的torch.utils.data.DataLoader加载自己准备好的数据集。同时想要直观查看或验证生成的数据是否正确。通过直观展示数据–训练数据和标签–来验证数据集。自定义的数据集是使用PIL库的Image.open读取的图像数据。还是用它来展示验证数据。测试代码如下:if __name__ == "__main__": import time from PIL import Image

2022-02-23 16:58:08 1209

原创 NVIDIA+CUDA+cudaNN的配置与Anaconda虚拟环境的搭建--深度学习第一步

目标:从头开始,一步一步搭建深度学习环境实现适用于python语言的深度学习网络训练环境具体内容包括:1.英伟达显卡安装和cuda配置安装;2.虚拟环境Anaconda3的搭建;3.测试实现torch1.4+gpu。NVIDIA显卡的cuda和cuDNN配置:提示:这里以win10下的NVIDIA GeForce RTX 3060为例,进行安装描述。首先:找查看显卡信息的地方,NVIDIA Control Panel,因为需要知道下载那个版本的cuda来与之匹配。查找版本信息:472

2022-02-17 17:38:40 3628

原创 python的GUI之计算器

学习目标:学会利用python的GUI做界面布局手写计算器代码熟悉控件的使用方法优化计算器代码,解决获取按钮文本的方法了解lambda函数的传参优点和局限打包生成自己的计算器软件,并独立运行学习内容:手写一个简单计算器1、计算器目标图目标计算器设计分为三个部分背景部分根:Tk()展示部分:上方展示算式,下方展示计算结果按钮部分2、 计算器计算功能1. 加减乘除,放在=,按钮上2. 回退,放在<-按钮上3. 清除,放在MC按钮上3、 代码实现1. 外观布

2021-12-10 14:47:23 8643 4

原创 EOFError: Ran out of input

项目场景:对于序列化字节文件读取数据时import pickledb = pickle.load(dbfile)问题描述:文件操作模式匹配问题EOFError: Ran out of inputEOF: end of file,文件读写相关错误。没有按照正确的读写模式操作文件,会报此错。原因分析:文件模式解决方案:给对应的文件操作选择合适的读写追加模式。# Begin to show your code!"""1-5:make_db_pickle.pypickle.d

2021-12-03 11:27:18 19559

原创 python数据类型与数据结构--内置数据类型

学习目标:将python所涉及的数据类型、数据结构弄清楚python作为面向对象编程语言。那么代表数据的对象都有哪些呢?在这里我把他们分为内置数据类型,文件数据类型,第三方常用数据结构和自定义的数据结构四个方向去介绍。内置数据类型有7种:数值型:整型int, 浮点数(小数)float,复数complex文本型:字符与字符串str序列型:列表list,元组tuple,序列对象range集合类型:集合set,不可变集合frozenset布尔类型:布尔bool二进制类型:字节数组bytea

2021-11-30 16:59:25 3171

原创 python装饰器

学习目标:一口气把装饰器描述清楚弄清楚装饰器前要理解三个东西:函数对象、函数嵌套、函数构成闭包。学习内容:函数对象好说,python编程语言属于动态语言,python中一切皆对象,所以函数也是对象。函数对象用函数名称表示(仅名称,没有括号,也没有参数)。例如,定义了一个求和函数add,那么此处的add就是个函数对象。def add(username, a, b): print(f"{a}+{b}={a + b}") return a + b函数嵌套或者嵌套函数,就是定

2021-11-25 16:42:25 3011

原创 python:迭代器对象,迭代器和迭代

学习目标:学习迭代器初级知识迭代器的定义;迭代器的创建;迭代器的判断。学习内容:1. 迭代器的定义迭代器指的是迭代取值的工具。迭代是指一个重复的过程,每一次重复都是基于上一次结果而来,迭代提供了一种通用的不依赖索引的迭代取值方式。2. 可迭代对象与迭代器的异同2.1.可迭代对象但凡内置有__iter__方法的对象,都称为可迭代对象。常见可迭代的对象:str,list,tuple,dict,set,文件对象。2.2.迭代器对象既内置有__iter__方法,又内置__ne

2021-11-19 17:32:46 1977

原创 python内置【下载服务器】

本文是读书笔记我是《python修炼之道》的作者Rocky0429的粉今天改了blog名:改Beauthy Tan为 柏常青,简简单单挺好学习目的:Python 中内置了一个「下载服务器」,简单又好用Python 也会传文件,再也不用看某某网盘的脸色了!通过这种方式来传输文件,可以节省很多时间,提高文件传输的效率。操作方法默认你们已安装好python了。首先进入目录(文件夹)注:windows下,在该目录空白处按住shift+鼠标右键,找到命令行窗口;输入 python -m h

2021-11-04 16:41:04 572

原创 Python 字符编码与当前环境的编码格式

学习目标:Python 字符编码关于字符编码的发展史,计算机的字符编码并不是一蹴而就的,而是有一个发展的过程。ASCII 码(20 世纪 60 年代,计算机发明的早期制定的一套字符编码,解决了英文和二进制间的对应关系。Unicode 码(统一符号的编码)在编码上, 对世界上绝大多数的文字系统进行了整理,编码,使得电脑可以用更为简单的方式来呈现和处理文字,它伴随着通用字符集的标准而发展,同时也以书本的形式对外发表。UTF - 8UTF 就是 Unicode 的实现方式,而 UTF -8 是

2021-11-03 17:26:23 389

FER,Facial expression recognition表情识别算法模型

制作一个表情分类数据集,用yolov8m-cls训练的分类模型。

2024-04-09

yolov8-pose姿势估计,站立识别:动作检测-站姿-接口函数

基于yolov8-pose的姿势估计模式,实现站姿动作识别python接口和关键点pose模型。详细实现步骤参见博客-yolov8-pose姿势估计,站立识别。https://blog.csdn.net/beauthy/article/details/134651110?spm=1001.2014.3001.5501

2023-11-27

轮廓边缘预测模型u2net.pth

项目U2-net.pth的目的是把服装裤子的轮廓边缘预测出来。 1. 数据集包括:服装裤子和裤子轮廓图作为标签 2. 构建模型:U2-net 3. 实现:数据准备+训练代码+测试代码+评估和展示 项目详细数据和代码参见本blog:https://blog.csdn.net/beauthy/article/details/121076548?spm=1001.2014.3001.5501

2021-11-01

checkpoints.zip

本资源对应Blog:虚拟试穿 without parsing (https://blog.csdn.net/beauthy/article/details/118147977)的模型应用资源。测试用模型有两个:gen_model_final.pth,warp_model_final.pth。即为本资源提供的模型数据。需要测试数据集可以在资源或blog下留言。

2021-06-23

checkpoints.rar

本资源对应Blog:虚拟试穿测试详细讲解(https://blog.csdn.net/beauthy/article/details/113698320)的模型资源,整个网络由G1+G2+Unet+G3构成。训练保存的网络模型有:latest_net_U.pth,latest_net_G1.pth,latest_net_G2.pth,latest_net_G.pth。即为本资源提供的模型数据。需要测试数据集可以在资源或blog下留言。

2021-06-16

KPDEM_model.zip

KPDEM_model.zip包括用关键点模型算法(Keypoints Detection)训练服装数据后,得到的裤子、短裙、外套,大衣,dress的关键点检测模型。

2021-04-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除