一、引言
在当今数字化时代,AI Agent(人工智能代理)正以前所未有的速度融入各行各业,成为推动创新与变革的核心力量。从智能客服在电商平台上的即时响应,到自动驾驶汽车在道路上的精准导航;从医疗诊断辅助系统为医生提供关键决策支持,再到金融领域的智能投顾助力投资者把握市场机遇,AI Agent的身影无处不在,其应用场景之广泛、潜力之巨大令人瞩目。
而作为AI Agent开发中的关键一环,模型的部署与调用起着承上启下的重要作用。它将前沿的AI研究成果转化为实际可交互、可服务的应用,使得智能能力能够触达终端用户。在众多模型之中,Llama3_1-8B-Instruct以其出色的语言理解与生成能力脱颖而出。当它与高效的FastApi框架相结合时,更是为开发者开启了一扇通往便捷、高性能AI应用开发的大门。
接下来,本文将深入探讨如何基于Llama3_1-8B-Instruct模型,运用FastApi进行部署调用,一同揭开智能应用开发的新篇章,助力各位开发者在AI的浪潮中抢占先机,打造出更具智慧与价值的应用产品。
二、Llama3_1-8B-Instruct模型解析
(一)模型概述
Llama3_1-8B-Instruct模型源自Meta开发的开源大型语言模型系列Llama。作为Llama 3家族中的关键成员,它承载着前沿的AI技术成果,专为应对复杂多变的文本生成与对话交互场景精心打造。其研发过程汇聚了海量的多语言文本数据,通过先进的训练算法不断优化模型参数,使得模型在语言理解与生成的精准度上实现了质的飞跃。
在实际应用中,它展现出了令人瞩目的多语言处理优势,无论是英语、中文、西班牙语、法语等主流语言,还是一些小众语种,模型都能迅速捕捉文本中的语义信息,精准解析语法结构,跨越语言障碍,为全球用户提供流畅、自然的交互体验。在跨国企业的客服场景中,它能够实时翻译并回答来自不同国家客户的咨询;在学术交流领域,助力研究人员快速查阅外文文献并准确理解核心内容。
同时,其强大的推理能力更是为解决复杂问题提供了有力支撑。面对需要逻辑推导、因果分析的任务,如科学问答、技术难题探讨等,模型能够依据已有知识,有条不紊地进行推理运算,给出合理且具有深度的回答,宛如一位知识渊博、思维敏捷的专家,随时待命为用户答疑解惑,推动各个领域的智能化进程。
(二)模型特性
- 参数规模:拥有80亿个参数,这一规模在模型性能与资源消耗之间找到了精妙的平衡点。相较于动辄数百亿参数的超大型模型,它在运行时对硬件资源的需求相对温和,使得普通开发者在常规配置的服务器或工作站上便能轻松部署,降低了AI应用开发的门槛。与此同时,80亿参数又赋予了模型足够的复杂性与表达能力,足以应对绝大多数常见的自然语言处理任务,无论是生成一篇逻辑严谨的短文、回答专业领域的知识问答,还是参与多轮连贯的对话交流,都能表现得游刃有余。
- 长上下文支持:具备支持长达128k个词元(tokens)的上下文长度的能力,这无疑是Llama3_1-8B-Instruct的一大亮点。在处理长篇幅的文档、多轮次的对话历史记录,或是需要综合分析大量文本信息的场景时,模型能够将超长的文本序列完整纳入考量范围。例如,在撰写一部长篇小说的续写任务中,模型可以精准理解前文几十章的情节脉络、人物关系,从而创作出风格一致、情节连贯的后续章节;在长时间的技术研讨对话里,模型能时刻回溯之前提及的技术要点、讨论方向,确保每一次回复都紧密贴合对话主题,为用户提供连贯、深入的交互体验,避免因上下文信息缺失而导致的回答偏差或理解断层。
- 架构特性:基于Transformer的自回归架构构建,这一架构已然成为现代自然语言处理领域的基石。Transformer架构通过多头注意力机制,能够并行处理文本中的各个部分,高效捕捉词元之间的复杂关联,使得模型在处理长文本时依然能够保持敏锐的语义感知能力。而更为关键的是,Llama3_1-8B-Instruct通过人类反馈强化学习(RLHF)进行了精细微调。在微调过程中,模型不断学习人类给出的优质回答示例、偏好反馈,逐渐调整自身的生成策略,使其输出与人类的思维习惯、语言风格以及期望的回答方向高度契合。这意味着在实际交互中,模型给出的回答不仅在语法和逻辑上正确无误,更在表达方式、情感倾向等方面贴合用户需求,提供更加人性化、易理解的交互内容,真正实现人机交互的无缝对接。
三、AI Agent应用开发基础
(一)AI Agent是什么
AI Agent,即人工智能代理,是一种智能化的软件程序,犹如一位具备独立思考与执行能力的虚拟助手,能在复杂多变的环境中自主运行。它依托先进的人工智能技术,特别是以大语言模型作为核心驱动力,被赋予了感知环境、自主决策以及执行任务的卓越能力。
与传统软件相比,AI Agent具有显著优势。传统软件多遵循预设规则,被动等待用户指令,执行固定流程,灵活性欠佳。而AI Agent宛如一个具备主观能动性的智能体,它能够实时监测环境变化,主动收集各类信息,运用内置的智能算法进行深度分析,进而依据所得结果自主决定后续行动步骤。在面对海量信息时,传统搜索引擎只是机械地罗列相关词条,AI Agent却能像一位专业的信息分析师,精准提炼关键要点,为用户提供条理清晰、重点突出的内容总结;在处理用户需求时,传统软件可能因预设路径单一而陷入困境,AI Agent则能随机应变,灵活调整策略,通过多轮交互逐步明晰用户意图,直至提供令人满意的解决方案,真正实现智能化、个性化的服务体验。
(二)核心组件剖析
- 模型组件:作为AI Agent的“智慧大脑”,模型组件承担着理解自然语言输入、解析语义、把握用户意图的重任。在面对复杂多样的文本信息时,它凭借海量训练数据所积累的知识储备以及精湛的语言处理技巧,精准识别关键信息,洞察用户需求背后的潜在目标。例如,当用户输入一段模糊的需求描述,模型组件能够迅速捕捉关键词,关联相关知识领域,初步判断任务类型,为后续的决策制定提供坚实依据。同时,它还具备对工具返回结果的解读能力,将从外部工具获取的原始数据转化为符合用户认知的、有价值的信息,融入到最终的回复生成中,确保交互的连贯性与准确性。
- 规划组件:规划组件宛如一位运筹帷幄的指挥官,负责将复杂任务拆解为一个个可执行的子任务,并精心规划执行顺序。它基于模型组件对任务的初步理解,结合自身内置的策略库与逻辑推理能力,为AI Agent绘制出一条清晰合理的行动路线图。以组织一场线上会议为例,规划组件会依次安排发送会议通知、准备会议资料、检查参会设备等子任务,确保各个环节紧密衔接,按时推进。并且,在执行过程中,它能根据实时反馈灵活调整计划,若遇到参会人员时间冲突,及时重新规划会议时间并通知相关人员,保障任务的顺利完成。
- 记忆组件:记忆组件相当于AI Agent的“知识宝库”与“经验存储器”。它不仅能够存储过往交互中的文本信息,构建起连续的对话上下文,使得AI Agent在多轮对话中始终保持对话题的精准把握,避免出现前后矛盾或信息脱节的情况;还能将长期积累的知识、经验以及用户偏好等数据进行有效归档,为当下决策提供历史参考。在智能客服场景中,记忆组件可以快速调取同一用户之前的咨询记录、购买历史,基于这些个性化信息提供更贴合用户需求的服务,如精准推荐相关产品、针对性解答常见问题,极大提升用户体验。
- 工具使用组件:工具使用组件是AI Agent连接外部世界、拓展自身能力边界的关键桥梁。它内置了丰富多样的工具接口,涵盖数据库查询、API调用、文件操作等各类实用功能。当模型组件判断当前任务需要借助外部工具才能完成时,工具使用组件便迅速响应,按照既定规范精准调用相应工具,获取关键数据或执行复杂操作。比如,在用户查询实时股票价格时,工具使用组件立即激活金融数据接口,实时抓取最新股价信息并反馈给模型组件,助力AI Agent为用户提供及时、准确的答案,真正实现从“能说会道”到“能做善成”的跨越。
四、FastApi入门
(一)FastApi简介
FastApi作为一款基于Python的现代Web框架,宛如一颗冉冉升起的新星,在众多开发者的视野中绽放出耀眼光芒。它凭借卓越的性能表现,在处理高并发请求时游刃有余,能够轻松应对海量用户的同时访问,为线上应用提供稳定、高效的服务支撑。
相较于传统的Web框架,如Flask和Django,FastApi有着诸多显著优势。与Flask相比,FastApi在保持简洁易用的同时,引入了先进的异步编程支持,使得I/O密集型任务的处理效率大幅提升,真正实现了低延迟、高吞吐量。而相较于Django,FastApi虽然在功能的全面性上稍逊一筹,但它却以轻量化的设计、灵活的架构以及出色的性能优化脱颖而出,尤其适用于专注于API开发的项目,让开发者能够摆脱繁重的框架束缚,快速迭代产品功能。
其底层基于Starlette构建,充分汲取了Starlette的异步处理能力以及对HTTP协议的精细支持;同时依赖Pydantic进行数据校验,确保输入输出数据的准确性与合法性,为应用的稳定性保驾护航。在开发过程中,FastApi能够依据函数签名自动生成详细且直观的OpenAPI文档,让团队成员之间的协作更加顺畅,也使得前后端对接工作变得轻而易举,极大地提升了开发效率,降低沟通成本,已然成为众多开发者在构建高性能Web应用时的不二之选。
(二)基础使用示例
以下是一段简单的FastApi代码示例,让我们初步领略其魅力:
from fastapi import FastAPI
# 创建FastApi应用实例
app = FastAPI()
# 定义根路径的GET请求处理函数
@app.get("/")
async def read_root():
return {"message": "欢迎使用FastApi"}
# 定义带参数的GET请求处理函数
@app.get("/items/{item_id}")
async def read_item(item_id: int, q: str = None):
return {"item_id": item_id, "q": q}
在上述代码中,首先通过 FastAPI() 创建了一个应用实例 app,这是整个FastApi应用的核心枢纽。接着,使用 @app.get("/") 装饰器定义了一个处理根路径(/)的GET请求函数 read_root,当用户访问根路径时,函数将返回一个包含欢迎信息的JSON数据。
再往下,@app.get("/items/{item_id}") 则定义了一个带有路径参数 item_id 的GET请求处理函数 read_item,其中 item_id 被指定为整数类型,并且还带有一个可选的查询参数 q(字符串类型)。当用户访问类似 /items/42?q=query_string 的路径时,函数将返回包含 item_id 和 q 值的JSON响应,精准地处理用户的请求并给予恰当反馈。
最后,在命令行中执行 uvicorn main:app --reload(假设代码保存在 main.py 文件中),即可启动FastApi服务器,开启高效的Web服务之旅,让应用随时待命,响应来自各方的请求。通过这段简洁的代码,相信大家已经对FastApi的基本使用有了初步的认识,后续我们将在此基础上深入探索其更强大的功能。
五、Llama3_1-8B-Instruct与FastApi的结合
(一)前期准备
在开启Llama3_1-8B-Instruct与FastApi的协同之旅前,充分且细致的前期准备工作是确保后续部署顺利进行的基石。
环境搭建方面,鉴于Llama3_1-8B-Instruct模型对计算资源的需求特性,推荐选用配置有NVIDIA GPU(如RTX 30系列、40系列)且显存不低于16GB的服务器或工作站,以保障模型运行的流畅性与高效性。操作系统层面,Ubuntu 20.04 LTS或更高版本是理想之选,其对各类依赖库的兼容性良好,能有效避免潜在的软件冲突。
依赖安装环节,借助Python的包管理工具pip,依序执行以下指令:pip install fastapi uvicorn transformers accelerate。其中,FastApi及其依赖的Uvicorn是构建Web应用的核心组件,transformers库用于模型的加载与交互,accelerate库则能优化模型在特定硬件环境下的运行效率,确保各模块各司其职、协同发力。
模型下载阶段,优先考虑从Hugging Face Model Hub获取Llama3_1-8B-Instruct模型文件,其作为全球知名的AI模型资源库,提供了丰富且经过严格校验的模型版本。下载完成后,为进一步优化模型在推理阶段的性能表现,可选用合适的量化工具(如GPTQ、bitsandbytes等)对模型进行量化处理,在不显著损失模型精度的前提下,大幅缩减模型占用的显存空间,为后续的高效部署奠定坚实基础。
(二)部署流程详述
首先,在Python脚本中导入必要的库:
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import uvicorn
这里,FastAPI 是构建Web应用的主体框架,Request 用于处理传入的HTTP请求;AutoTokenizer 和 AutoModelForCausalLM 分别负责模型的文本分词与核心推理功能加载,uvicorn 则承担着启动Web服务器的重任。
接着,创建FastApi应用实例:
app = FastAPI()
这一步如同搭建一座大厦的地基,app 实例将作为后续路由注册、请求处理的核心枢纽,掌控整个应用的运行流程。
随后,定义处理模型请求的路由:
@app.post("/generate")
async def generate_text(request: Request):
data = await request.json()
prompt = data.get('prompt')
# 后续补充模型调用与响应生成逻辑
return {"response": "示例响应"}
上述代码通过 @app.post("/generate") 装饰器定义了一个处理POST请求的路由,路径为 /generate。当客户端向该路径发送包含待生成文本提示信息(prompt)的JSON数据时,函数将被触发,进而开启后续的模型调用流程。
下一步,加载Llama3_1-8B-Instruct模型:
model_name_or_path = "your_model_path"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16)
此处,your_model_path 需替换为实际的模型文件存储路径,通过 from_pretrained 方法分别加载分词器与模型。其中,device_map="auto" 能够依据当前硬件环境自动分配模型各层的计算设备,充分发挥硬件性能;torch_dtype=torch.bfloat16 则指定模型运行的数据类型,在精度与效率之间实现精妙平衡。
最后,在路由函数中实现模型调用与响应生成:
@app.post("/generate")
async def generate_text(request: Request):
data = await request.json()
prompt = data.get('prompt')
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
generated_ids = model.generate(input_ids, max_new_tokens=512, do_sample=True, top_p=0.9, temperature=0.5)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return {"response": response}
在完善后的 generate_text 函数中,首先从请求数据中提取 prompt,经分词器编码后转换为模型可接受的输入张量,并传输至模型计算设备上。接着,调用模型的 generate 方法,依据设定的参数(如 max_new_tokens 控制生成文本长度、do_sample 结合 top_p 与 temperature 实现多样化采样输出)生成文本序列。最后,通过分词器将生成的序列解码为自然语言文本,作为响应返回给客户端,完成一次从请求到响应的完整交互流程。
完成上述步骤后,在终端执行 uvicorn main:app --reload(假设代码保存于 main.py 文件),FastApi应用便会启动,监听指定端口,随时准备接收来自客户端的请求,开启智能文本生成服务。通过这一系列严谨且精细的部署流程,Llama3_1-8B-Instruct模型的强大能力得以借助FastApi框架高效对外输出,为各类AI应用场景注入源源不断的智慧动力。
六、应用场景实例展示
(一)智能客服场景
在当今数字化商业时代,客户服务的质量与效率直接关乎企业的声誉与竞争力。借助Llama3_1-8B-Instruct与FastApi的强大组合,我们能够快速搭建出智能客服系统,为企业赋能。
以下是一个简化的智能客服示例代码:
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import uvicorn
app = FastAPI()
model_name_or_path = "your_model_path"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16)
@app.post("/customer_service")
async def customer_service(request: Request):
data = await request.json()
user_query = data.get('query')
input_ids = tokenizer.encode(user_query, return_tensors="pt").to(model.device)
generated_ids = model.generate(input_ids, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.7)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return {"answer": response}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
在上述代码中,首先创建了FastApi应用实例,并加载了预训练的Llama3_1-8B-Instruct模型及其分词器。接着,通过 @app.post("/customer_service") 定义了处理客户咨询的路由。当收到用户的查询请求时,从请求数据中提取查询内容,经分词器编码后传入模型,模型依据设定参数生成回答,最后将回答解码并返回给用户。
例如,当用户咨询某电子产品的使用方法时,智能客服能迅速调用模型,结合内置的产品知识库,给出详细的操作步骤与注意事项,大大缩短客户等待时间,提升服务效率,让企业在客户服务环节脱颖而出。
(二)知识问答平台
知识问答平台旨在满足用户对各类知识的探索需求,无论是学术研究、日常学习还是专业领域的疑难解惑。基于Llama3_1-8B-Instruct与FastApi搭建的知识问答平台,具备强大的知识处理与精准回答能力。
核心代码如下:
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import uvicorn
app = FastAPI()
model_name_or_path = "your_model_path"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16)
@app.post("/knowledge_qa")
async def knowledge_qa(request: Request):
data = await request.json()
question = data.get('question')
input_ids = tokenizer.encode(question, return_tensors="pt").to(model.device)
generated_ids = model.generate(input_ids, max_new_tokens=300, do_sample=True, top_p=0.9, temperature=0.6)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return {"answer": response}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8001)
在此示例中,同样先搭建FastApi框架并引入模型。@app.post("/knowledge_qa") 路由负责处理知识问答请求,当用户提出问题,如 “量子计算的原理是什么”,模型会在接收到问题编码后,依托自身海量知识储备,结合可能接入的外部知识图谱(若有集成),对问题进行深度理解与分析,进而生成通俗易懂且准确的回答,为用户打开知识探索的便捷之门,拓宽知识获取途径,助力学习与研究工作的高效开展。
七、部署中的挑战与优化策略
(一)常见问题剖析
在Llama3_1-8B-Instruct与FastApi的部署过程中,开发者常面临诸多棘手问题。首先是资源占用方面,模型加载时,即使采用了优化的 device_map 进行硬件资源自动分配,其对GPU显存的需求依旧不容小觑。对于一些显存规格较低(如8GB)的设备,加载模型可能直接导致“Out of Memory”错误,使得部署工作戛然而止。即便在推理阶段,随着请求并发量的上升,显存占用也会迅速攀升,影响系统的稳定性。
性能瓶颈同样突出,当面对高并发请求时,FastApi应用的响应延迟显著增加。这一方面源于模型推理本身的计算复杂性,每一次文本生成都需要在庞大的参数空间中进行运算;另一方面,若代码层面未充分利用异步编程特性,I/O等待时间与计算时间相互叠加,进一步拖慢了整体响应速度,导致用户体验大打折扣。
模型兼容性问题也时有发生,不同版本的 transformers 库与模型文件可能存在细微差异,导致加载模型失败或推理结果异常。例如,某些旧版本的库在处理模型的特定层结构时,无法正确适配新引入的优化算法,进而引发数值计算错误或梯度更新异常,使得模型输出的文本逻辑混乱、语义偏离预期。这些问题相互交织,成为了部署道路上的重重障碍,亟待解决。
(二)优化方向探讨
针对上述难题,一系列优化策略应运而生。模型量化是降低资源占用的有效手段,借助如GPTQ、bitsandbytes等量化工具,将模型参数从高精度的数据类型(如 float32)转换为低精度(如 int8 或 bfloat16),能够在不显著损失模型精度的前提下,大幅削减显存占用。实验表明,经过量化处理的Llama3_1-8B-Instruct模型,在推理时的显存需求可降低30%-50%,为在资源受限环境下的部署开辟了新路径。
缓存机制的引入能极大提升性能,在FastApi层面,可以利用内存缓存(如 lru_cache 装饰器)存储频繁访问的模型推理结果。对于相同的输入文本,直接从缓存中获取结果,避免重复计算,尤其在处理热门问题或重复请求较多的场景下,能显著缩短响应时间。同时,结合分布式缓存(如Redis),还可实现跨进程、跨服务器的缓存共享,进一步拓展优化效果。
异步处理则是应对高并发的利器,在FastApi的路由函数中,充分利用 async/await 语法糖,确保模型推理与其他I/O操作(如数据库查询、外部API调用)能够并行执行。当收到多个请求时,非阻塞地将任务提交给模型计算线程,利用等待模型输出的间隙,处理其他请求的准备工作,从而充分发挥硬件多核优势,提升系统整体吞吐量,确保在高负载下仍能为用户提供流畅、快速的服务体验,让Llama3_1-8B-Instruct与FastApi的组合在各类应用场景中绽放更耀眼的光芒。
八、总结与展望
通过本文的深入探索,我们全面了解了基于Llama3_1-8B-Instruct模型与FastApi框架构建AI Agent应用的全流程。从模型的深度剖析,知晓其多语言处理、推理能力等卓越特性;到FastApi的详细解读,领略其高性能、易用性的优势;再到二者结合的实战部署,攻克环境搭建、流程优化等难题,成功搭建智能客服、知识问答等实用场景。虽过程不乏挑战,如资源占用、性能瓶颈、兼容性问题,但也有模型量化、缓存机制、异步处理等优化策略应对。
展望未来,AI Agent的发展前景无比广阔。随着技术的持续迭代,模型将更智能、精准,理解和生成能力进一步提升,如在复杂医疗诊断、金融风险预测等领域发挥关键作用。框架层面,FastApi等将持续优化,性能更强、开发更便捷。应用场景将不断拓展,融入教育、娱乐、工业制造等更多行业,革新传统模式,创造全新业态。相信在开发者的不懈努力下,AI Agent将成为推动社会进步、改善生活品质的核心力量,开启智能新时代。
博主还写了与本文相关文章,欢迎批评指正:
AI Agent实战30篇目录集绵:
第一章 Agent基本概念【共7篇】
2、AI Agent:重塑业务流程自动化的未来力量(2/30)
3、AI Agent 实战:三步构建,七步优化,看智能体如何进入企业生产(3/30)
4、探秘 AI Agent 之 Coze 智能体:从简介到搭建全攻略(4/30)
5、探秘多AI Agent模式:机遇、应用与未来展望(5/30)
6、探秘 AI Agent 之 Coze 智能体:工作流模式(6/30)
7、探秘 AI Agent 之 Coze 智能体:插件创建与使用(7/30)
第二章 Agent案例分析 【共8篇】
2、AI Agent案例与实践全解析:字节智能运维(9/30)
3、Agent 案例分析:金融场景中的智能体-蚂蚁金服案例(10/30)
4、华为 AI Agent:企业内部管理的智能变革引擎(11/30)
5、微众银行金融场景 Agent:创新实践与深度剖析(12/30)
6、京东物流营销 Agent:智能驱动,物流新篇(13/30)
7、数势科技:解锁数据分析 Agent 的智能密码(14/30)
8、南方电网场景中 Agent 的智慧赋能与创新实践(15/30)
第三章 AI Agent应用开发【6篇】
1、让 Agent 具备语音交互能力:技术突破与应用前景(16/30)
2、探寻AI Agent:开启知识图谱自动生成新篇章(17/30)
3、解锁AI Agent潜能:智能时代的信息处理利器(18/30)
4、解锁Agent的数据分析潜能,开启智能决策新时代(19/30)
5、解锁AI Agent潜能:LLaMA3-1-8B-Instruct WebDemo部署实战(20/30)
6、解锁AI Agent潜能:Llama3_1-8B-Instruct与FastApi实战(21/30)
后期文章正在努力创作中,敬请期待......
第四章 多Agent框架【7篇】
1.MetaGPT简介
2.单智入门
3.多智能体
4.AutoGen框架介绍与基础环境安装
5.AutoGen模型配置与代码执行
6.AutoGen工具使用
7.AutoGen控制退出代理对话
第五章 Agent与应用系统【1篇】
1.AI Agent 在客户关系管理系统的整合应用
第六章 智能体工具【1篇】
1.Text2Sql