暴力算法瑰丽版——动态规划

今天讲的算法是动态规划,所谓动态规划就是讲需要重复出现的问题的答案记录下来,或者是前面的子问题对后面的问题有帮助的,把子问题的答案记录下来,这样就可以减少重复的计算,以此来降低时间复杂度,一般适用于有最优子结构和重叠子问题的情况

比如说,我们求最长上升子序列的问题:

一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

那么怎么来解决这个问题呢?
我们对于每个有N个数的序列 我们需要保留两个参数,一个是其中最长子序列的长度,还有一个是最长子序列的最后一个数,前者是要求的答案,后者是为了与后面增加的数进行比较,所以我们设置两个数组,一个是b[i] 一个是c[i]
其中b 用来存储长度 c用于存储为数

当然我们把给定的数都放在a[n]中,我们分析其变化情况

对于这个问题 b和c的改变一般有两种情况:
对于每一个i而言,j从1-(i-1)循环
第一种情况: 判断A[i] 是否比c[j]来的大 如果大,就判断 a[i]

#include <iostream>

using namespace std;

int main()
{
    int n;
    cin>>n;
    int a[123],b[123]={0},c[123];
    int i,j;
    for(i=0;i<n;i++){
       cin>>a[i];
    }
    b[0]=1;
    c[0]=a[0];
    for(i=1;i<n;i++){
        for(j=0;j<i-1;j++){
        if(a[i]>c[j]&&a[i]<c[j+1]) {
            c[j+1]=a[i];
        }
        }
        if(a[i]>c[i-1]){
            c[i]=a[i];
            b[i]=b[i-1]+1;
        }else {b[i]=b[i-1];
        c[i]=c[i-1];
        }
    }
    cout<<b[n-1];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值