代码相关问题
1
懿朔
这个作者很懒,什么都没留下…
展开
-
some code record
知识追踪任务中数据的预处理部分 (处理成one-hot向量) def getData(self, file_path): data = [] with open(file_path, 'r') as file: for len, ques, ans in itertools.zip_longest(*[file] * 3): len = int(len.strip().strip(','))原创 2021-12-25 22:07:54 · 865 阅读 · 0 评论 -
python各种文件的读取和存储
python 读取 json 文件with open('jsonFilePath', 'r+') as f: json_data = f.readlines() for line in json_data: dict_data = json.loads(line) #load是从文件里面load,loads是从str里面loadpython 存储pickle 文件import _pickle as cPicklecPickle.dump(XXX(要存储的.原创 2021-08-10 21:53:47 · 310 阅读 · 0 评论 -
在jupyter中安装包
!pip install 包名若在没有权限时,会报以下错误consider --user to permision此时应使用!pip install --user 包名原创 2021-07-21 19:44:26 · 1911 阅读 · 0 评论 -
DataFrame 知识积累
- dataFrame 按照某列进行排序 DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None) by=['col1']/['col1,'col2',...] 按照一列排序/按照多列排序- dataframe 插入新列 DataFrame.insert(loc, column, value原创 2021-07-21 19:43:37 · 157 阅读 · 0 评论 -
torch中一些代码小记
- torch中的维度改变 reshape() / view()a=torch.ones([24,8,32])b=a.reshape(-1,32) c=a.view(-1,32)print(b.shape) #torch.Size([192, 32])print(c.shape) #torch.Size([192, 32])reshape() 和 view() 的区别两者都是用来重塑tensor的shape的。view只适合对满足连续性条件(contiguous)的 tensor进行原创 2021-07-11 20:41:07 · 149 阅读 · 0 评论 -
推荐系统中BPR损失及对应的AUC计算
AUC:AUC是而分类模型中使用的主要离线评测指标,其不关注具体的得分,只关注排序结果。AUC指标有两种解释方法:1.“曲线下面积”2.排序能力 (若AUC=0.7,则可理解为:给定一个正样本和一个负样本,在70%的情况下模型对正样本的打分高于对负样本的打分,在这个解释下我们关心的只有正负样本之间分数的高低而具体的分值无关紧要)BPR损失:该损失考虑用户物品交互中的可观察项和不可观察项的相对顺序,BPR假定更能反映出用户偏好的可观察项的交互相较于那些不可观察项来说应该赋予高的预测值关键代码原创 2020-08-21 16:58:20 · 6099 阅读 · 2 评论 -
8.18 tensorflow 训练的时候出现的一系列问题
1.nan in gradiens问题:学习率设置的不太适合解决: 调整学习率2.训练集损失一直下降,验证集损失不降反增问题:数据集数据量不多,出现过拟合现象解决:添加L2正则原创 2020-08-18 20:59:03 · 422 阅读 · 0 评论 -
记看代码时遇到的不懂的知识点
从中间想起进行记载的以便加强记忆和之后的快速查看tf.tile(inputs,[m,n...len(inputs.shape()])第一个参数即函数的输入数据第二个参数的维度是输入数据的维度,每个值的含义是对输入维度进行几倍的扩张例子:import tensorflow as tfa = tf.constant([[1, 2], [3, 4], [5, 6]], dtype=tf.float32)a1 = tf.tile(a, [2, 3])with tf.Session() as sess原创 2020-08-05 14:33:11 · 201 阅读 · 0 评论