Novel Category Discovery
文章平均质量分 95
Fulin_Gao
主要研究方向包括开放集识别(Open-Set Recognition)、开放世界识别(Open-World Recognition)、增量学习(Incremental Learning)、新类别发现(Novel Category Discovery)、少样本学习(Few-Shot Learning)
展开
-
【Novel Category Discovery】A Unified Objective for Novel Class Discovery in ICCV 2021 个人理解
给定一个数据集,其中部分样本有标签(可认为它们属于已知类),其余样本无标签(可认为它们属于新类/未知类,未知类与已知类不重叠),要求模型保留对已知类的分类能力同时对无标签样本进行聚类,或称新类发现(Novel Category Discovery,NCD)。原创 2023-05-31 09:59:25 · 350 阅读 · 1 评论 -
【Novel Category Discovery】Parametric Classification for Generalized Category Discovery 个人理解
给定一个数据集,其中部分样本有标签(这里称其为已知类),其余样本无标签(可能属于已知类也可能属于未知类),要求将无标签样本中属于已知类的样本正确分类,对属于未知类的样本进行聚类。原创 2023-05-29 12:31:17 · 615 阅读 · 12 评论 -
【Novel Category Discovery】AutoNovel: Automatically Discovering and Learning Novel Visual Categories
给定一个数据集,其中部分样本有标签(可认为它们属于已知类),其余样本无标签(可认为它们属于新类/未知类),要求模型保留对已知类的分类能力同时对无标签样本进行聚类,或称新类发现(Novel Category Discovery)原创 2023-02-25 17:56:34 · 839 阅读 · 3 评论 -
【Novel Category Discovery】Open World Semi-Supervised Learning in ICLR 2022 个人理解
给定一个数据集,其中部分样本有标签(这里称其为已知类),其余样本无标签(可能属于已知类也可能属于未知类),要求将无标签样本中属于已知类的样本正确分类,对属于未知类的样本进行聚类或称发现新类。原创 2023-02-23 15:49:13 · 996 阅读 · 2 评论 -
【Novel Category Discovery】Generalized Category Discovery in CVPR 2022 个人理解
给定一个数据集,其中部分样本有标签(这里称其为已知类),其余样本无标签(可能属于已知类也可能属于未知类),要求将无标签样本中属于已知类的样本正确分类,对属于未知类的样本进行聚类。原创 2023-02-21 21:01:18 · 1513 阅读 · 1 评论 -
【Novel Category Discovery】Class-Incremental Novel Class Discovery in ECCV 2022 个人理解
最初,有一个有标签的数据集(其数据均属已知类),出于隐私保护,使用该数据集训练过模型后,数据会被变得不可获取,之后会有一个无标签的数据集(其数据均属于新类/未知类,与已知类不相交),要求模型保留对已知类的分类能力同时对无标签样本进行聚类,或称新类发现(Novel Category Discovery)。这样该无标签数据集就有了标签,训练模型后又变得不可获取,再对另一个无标签数据集进行新类发现,如此往复。原创 2023-03-01 19:59:27 · 694 阅读 · 6 评论 -
【Novel Category Discovery】OpenCon: Open-world Contrastive Learning in TMLR 2023 个人理解
给定一个数据集,其中部分样本有标签(可认为它们属于已知类),其余样本无标签(可能属于已知类也可能属于未知类/新类),要求将无标签样本中属于已知类的样本正确分类,对属于新类别的样本进行聚类。原创 2023-02-27 19:08:06 · 1044 阅读 · 0 评论 -
【Novel Category Discovery】Residual Tuning: Towards Novel Category Discovery without Labels in TNNLS
最初,有一个有标签的数据集(其数据均属已知类),出于隐私保护,使用该数据集训练过模型后,数据会被变得不可获取,之后会有一个无标签的数据集(其数据均属于新类/未知类,与已知类不相交,类别数已知),要求模型保留对已知类的分类能力同时对无标签样本进行聚类,或称新类发现(Novel Category Discovery)原创 2023-03-03 16:18:04 · 298 阅读 · 0 评论