Out-of-Distribution Detection
文章平均质量分 96
Fulin_Gao
主要研究方向包括开放集识别(Open-Set Recognition)、开放世界识别(Open-World Recognition)、增量学习(Incremental Learning)、新类别发现(Novel Category Discovery)、少样本学习(Few-Shot Learning)
展开
-
【Out-of-Distribution Detection】Evidential Deep Learning in NeurIPS 2018 个人理解
核心思想是将分类器的概率输出视为一个狄利克雷分布(Dirichlet Distribution)并替换,之后引入两个损失分别负责保证预测结果准确性和提升被错误分类的样本的不确定性。原创 2023-12-18 23:33:52 · 1505 阅读 · 2 评论 -
【Out-of-Distribution Detection】Mixup in NeurIPS 2019、CutMix in ICCV 2019、PixMix in CVPR 2022 个人理解
分布外检测(Out-of-Distribution Detection, OOD Detection),测试集中可能出现超出训练集样本分布的样本(可以是来自未知类的样本、被破坏的样本、异常样本等等),要求将这些样本隔离出来。原创 2023-05-19 20:52:59 · 623 阅读 · 1 评论