jupyter和numpy入门
jupyter
1 Jupyter Notebook 的快捷键
Jupyter Notebook 有两种键盘输入模式。编辑模式,允许你往单元中键入代码或文本;这时的单元框线是绿色的。命令模式,键盘输入运行程序命令;这时的单元框线是灰色。
1.1 命令模式 (按键 Esc 开启)
- Enter : 转入编辑模式
- Shift-Enter : 运行本单元,选中下个单元
- Ctrl-Enter : 运行本单元
- Alt-Enter : 运行本单元,在其下插入新单元
- Y : 单元转入代码状态
- M :单元转入markdown状态
- R : 单元转入raw状态
- 1 : 设定 1 级标题
- 2 : 设定 2 级标题
- 3 : 设定 3 级标题
- 4 : 设定 4 级标题
- 5 : 设定 5 级标题
- 6 : 设定 6 级标题
- Up : 选中上方单元
- K : 选中上方单元
- Down : 选中下方单元
- J : 选中下方单元
- Shift-K : 扩大选中上方单元
- Shift-J : 扩大选中下方单元
- A : 在上方插入新单元
- B : 在下方插入新单元
- X : 剪切选中的单元
- C : 复制选中的单元
- Shift-V : 粘贴到上方单元
- V : 粘贴到下方单元
- Z : 恢复删除的最后一个单元
- D,D : 删除选中的单元
- Shift-M : 合并选中的单元
- Ctrl-S : 文件存盘
- S : 文件存盘
- L : 转换行号
- O : 转换输出
- Shift-O : 转换输出滚动
- Esc : 关闭页面
- Q : 关闭页面
- H : 显示快捷键帮助
- I,I : 中断Notebook内核
- 0,0 : 重启Notebook内核
- Shift : 忽略
- Shift-Space : 向上滚动
- Space : 向下滚动
1.2 编辑模式 ( Enter 键启动)
- Tab : 代码补全或缩进
- Shift-Tab : 提示
- Ctrl-] : 缩进
- Ctrl-[ : 解除缩进
- Ctrl-A : 全选
- Ctrl-Z : 复原
- Ctrl-Shift-Z : 再做
- Ctrl-Y : 再做
- Ctrl-Home : 跳到单元开头
- Ctrl-Up : 跳到单元开头
- Ctrl-End : 跳到单元末尾
- Ctrl-Down : 跳到单元末尾
- Ctrl-Left : 跳到左边一个字首
- Ctrl-Right : 跳到右边一个字首
- Ctrl-Backspace : 删除前面一个字
- Ctrl-Delete : 删除后面一个字
- Esc : 进入命令模式
- Ctrl-M : 进入命令模式
- Shift-Enter : 运行本单元,选中下一单元
- Ctrl-Enter : 运行本单元
- Alt-Enter : 运行本单元,在下面插入一单元
- Ctrl-Shift– : 分割单元
- Ctrl-Shift-Subtract : 分割单元
- Ctrl-S : 文件存盘
- Shift : 忽略
- Up : 光标上移或转入上一单元
- Down :光标下移或转入下一单元
简单的魔法指令
%run 运行外部的python文件
%whos 查看声明了那些变量和函数
!ls 查看当前目录下的子文件和子目录
!pwd
#运行一个外部的python文件
%run 123.py
- 输出
你好成都
#%who的作用是显示所有声明的变量和函数
#whos的作用是显示所有的变量和函数的类型及值
%who
a = 1
def sum():
pass
%whos
- 输出
a
Variable Type Data/Info
——————————–
a int 1
sum function
现从一张图片上去认识numpy
import numpy as np
#matplotlib画图的,也可以读取图片
import matplotlib.pyplot as plt
#图片,音频都叫流(数据流)
#读取图片
cat = plt.imread('cat.jpg')
# 类似于print,不同变量会自动换行
display(cat,cat.shape)
输出
array([[[231, 186, 131],
[232, 187, 132],
[233, 188, 133],
…,
[100, 54, 54],
[ 92, 48, 47],
[ 85, 43, 44]],[[232, 187, 132], [232, 187, 132], [233, 188, 133], ..., [100, 54, 54], [ 92, 48, 47], [ 84, 42, 43]], [[232, 187, 132], [233, 188, 133], [233, 188, 133], ..., [ 99, 53, 53], [ 91, 47, 46], [ 83, 41, 42]], ..., [[199, 119, 82], [199, 119, 82], [200, 120, 83], ..., [189, 99, 65], [187, 97, 63], [187, 97, 63]], [[199, 119, 82], [199, 119, 82], [199, 119, 82], ..., [188, 98, 64], [186, 96, 62], [188, 95, 62]], [[199, 119, 82], [199, 119, 82], [199, 119, 82], ..., [188, 98, 64], [188, 95, 62], [188, 95, 62]]], dtype=uint8)
(456, 730, 3)
# 显示图像的维数
cat.shape
输出
(456, 730, 3)
plt.imshow(cat)
#RGB 0 255
type(cat)
输出
numpy.ndarray
im = np.random.randint(0,255,size=(456,730,3))
im = im.astype(np.float64)
plt.imshow(im)
Numpy
numeric python 数字化的python
numpy中最重要的一个形式叫ndarray n 表示的是n个 d dimension 维度 array 数组
Python 本身支持的数值类型有 int
(整型,python2 中存在 long 长整型)、float
(浮点型)、bool
(布尔型) 和 complex
(复数型)。
而 Numpy 支持比 Python 本身更为丰富的数值类型,细分如下:
bool
:布尔类型,1 个字节,值为 True 或 False。int
:整数类型,通常为 int64 或 int32 。intc
:与 C 里的 int 相同,通常为 int32 或 int64。intp
:用于索引,通常为 int32 或 int64。int8
:字节(从 -128 到 127)(tinyint 1字节 -2 ^7 ~ 2^7-1 (-128~127))
int16
:整数(从 -32768 到 32767)(smallint 2字节 -2 ^15 ~ 2^15-1 (-32768~32765))
int32
:整数(从 -2147483648 到 2147483647)(int 4字节 -2 ^31~ 2^31-1 (-2147483648~2147483647))
int64
:整数(从 -9223372036854775808 到 9223372036854775807)(bigint 8字节 -2 ^63 ~ 2^63-1)
uint8
:无符号整数(从 0 到 255) unsigneduint16
:无符号整数(从 0 到 65535)uint32
:无符号整数(从 0 到 4294967295)uint64
:无符号整数(从 0 到 18446744073709551615)float
:float64 的简写。float16
:半精度浮点,5 位指数,10 位尾数float32
:单精度浮点,8 位指数,23 位尾数float64
:双精度浮点,11 位指数,52 位尾数complex
:complex128 的简写。complex64
:复数,由两个 32 位浮点表示。complex128
:复数,由两个 64 位浮点表示。
在 Numpy 中,上面提到的这些数值类型都被归于 dtype(data-type)
对象的实例。
我们可以用 numpy.dtype(object, align, copy)
来指定数值类型。而在数组里面,可以用 dtype=
参数。
2.1 Numpy 中,ndarray
类具有六个参数,它们分别为:
>>shape:数组的形状。
>>dtype:数据类型。
buffer:对象暴露缓冲区接口。
offset:数组数据的偏移量。
>>strides:数据步长。
order:{'C','F'},以行或列为主排列顺序。
nd1 = np.ndarray(shape=(5,4,3),dtype=np.int64)
type(nd1)
输出
numpy.ndarray
下面,我们来了解创建 ndarray 的一些方法。在 numpy 中,我们主要通过以下 5 种途径创建数组,它们分别是:
1.从 Python 数组结构列表,元组等转换。
2.使用 np.arange、np.ones、np.zeros 等 numpy 原生方法。
3.从存储空间读取数组。
4.通过使用字符串或缓冲区从原始字节创建数组。
5.使用特殊函数,如 random。
2.2 从列表或元组转换
在 numpy 中,我们使用 numpy.array 将列表或元组转换为 ndarray 数组。其方法为:
numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
其中,参数:
object
:列表、元组等。dtype
:数据类型。如果未给出,则类型为被保存对象所需的最小类型。copy
:布尔来写,默认 True,表示复制对象。
下面,通过列表创建一个 ndarray 数组:
l = list('123456')
nd2=np.array(l)
type(nd2)
输出
numpy.ndarray
2.3 arange
方法创建
除了直接使用 array 方法创建 ndarray,在 numpy 中还有一些方法可以创建一些有规律性的多维数。首先,我们来看一看 arange()。arange() 的功能是在给定区间内创建一系列均匀间隔的值。方法如下:
numpy.arange(start, stop, step, dtype=None)
你需要先设置值所在的区间,这里为 [开始, 停止)
,你应该能发现这是一个半开半闭区间。然后,在设置 step
步长用于设置值之间的间隔。最后的可选参数 dtype
可以设置返回ndarray
的值类型。
举个例子:
nd3=np.arange(0,150,step=5,dtype=np.float32)
display(nd3.shape,nd3.dtype)
输出
(30,)
dtype(‘float32’)
nd3
输出
array([ 0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 50.,
55., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105.,
110., 115., 120., 125., 130., 135., 140., 145.], dtype=float32)
2.3 linspace
方法创建
linspace
方法也可以像arange
方法一样,创建数值有规律的数组。inspace
用于在指定的区间内返回间隔均匀的值。其方法如下:
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
start
:序列的起始值。stop
:序列的结束值。num
:生成的样本数。默认值为50。endpoint
:布尔值,如果为真,则最后一个样本包含在序列内。retstep
:布尔值,如果为真,返回间距。dtype
:数组的类型。
举个例子:
#全闭区间
nd4=np.linspace(0,150,num=151)
nd4.shape
输出
(150,)
#不适用dtype属性改变默认的数据类型
#使用numpyd.astype(np.float32)
nd4.astype(np.int)
输出
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150])
2.5.1 ones
方法创建
numpy.ones
用于快速创建数值全部为 1 的多维数组。其方法如下:
numpy.ones(shape, dtype=None, order='C')
其中:
shape
:用于指定数组形状,例如(1, 2)或 3。
dtype
:数据类型。
order
:{'C','F'}
,按行或列方式储存数组。
举个例子:
nd5=np.ones(shape=(456,730,3))
nd5.dtype
输出
dtype(‘float64’)
plt.imshow(nd5)
2.5.2 zeros
方法创建
zeros 方法和上面的 ones 方法非常相似,不同的地方在于,这里全部填充为 0。zeros 方法和 ones 是一致的。
numpy.zeros(shape, dtype=None, order='C')
其中:
shape
:用于指定数组形状,例如(1, 2)
或3
。
dtype
:数据类型。
order
:{'C','F'}
,按行或列方式储存数组。
举个例子:
nd6 = np.zeros(shape=(456,730,3))
nd6.dtype
输出
dtype(‘float64’)
#jpg rgb (0-255)
#png rgb (0-1)
plt.imshow(nd6)
2.6.1full
方法创建
numpy.full用于创建一个自定义形状的数组,可以自己指定一个值,该值填满整个矩阵。
numpy.full(shape,fill_value=num)
结果:
nd7 = np.full(shape=(456,730,3),fill_value=125.0)
nd7.dtype
输出
dtype(‘float64’)
plt.imshow(nd7)
2.6.2eye
方法创建
numpy.eye 用于创建一个二维数组,其特点是k
对角线上的值为 1
,其余值全部为0
。方法如下:
numpy.eye(N, M=None, k=0, dtype=<type 'float'>)
#k表示从下标第几个开始
其中:
N
:输出数组的行数。M
:输出数组的列数。k
:对角线索引:0(默认)是指主对角线,正值是指上对角线,负值是指下对角线。
举个例子:
nd8 = np.eye(5,5)
nd8
输出
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
redis和(memcached,memcache)
- memcache和redis统称为缓存,都是基于内存的
- memcache,只可以保存string类型的值
- redis 基本数据类型:string list set zset hash
- redis的堆区 -> 512MB
- redis在内存使用过载的时候,可以自动将数据存在硬盘上,或者通过配置,每5秒向硬盘写入一次
- redis可以实现消息队列,
- 广播机制,订阅,生产者与消费者
- hadoop strom activemq rabbitMQ
- swap空间没有挂载点(没有挂载在根目录下面)
- 如果服务器内存经常不够用